Please use this identifier to cite or link to this item:
DC FieldValue
dc.titleRelationship between CT intensity, micro-architecture and mechanical properties of porcine vertebral cancellous bone
dc.contributor.authorTeo, J.C.M.
dc.contributor.authorSi-Hoe, K.M.
dc.contributor.authorKeh, J.E.L.
dc.contributor.authorTeoh, S.H.
dc.identifier.citationTeo, J.C.M., Si-Hoe, K.M., Keh, J.E.L., Teoh, S.H. (2006-03). Relationship between CT intensity, micro-architecture and mechanical properties of porcine vertebral cancellous bone. Clinical Biomechanics 21 (3) : 235-244. ScholarBank@NUS Repository.
dc.description.abstractBackground. In vivo assessment of bone density is insufficient for the evaluation of osteoporosis in patients. A more complete diagnostic tool for the determination of bone quality is needed. Micro-computed tomography imaging allows a non-destructive method for evaluating cancellous bone micro-architecture. However, lengthened exposure to ionizing radiation prevents patients to be imaged by such a system. The aim for this study was to elucidate the relationships between image intensity (of Hounsfield units), cancellous bone micro-architecture and mechanical properties. Methods. Using pig vertebral cancellous bone, the bone specimens were imaged using clinical and micro-computed tomography scanners and subsequently subjected to uniaxial compression testing. Results. Results indicate that micro-architecture can be predicted using clinical image intensity. Micro-architectural parameters relevant to osteoporosis study, such as percent bone volume, trabecular bone pattern factor, structure model index, trabecular thickness and trabecular separation have shown significant correlation with R2 values of 0.83, 0.80, 0.70, 0.72, and 0.54, respectively, when correlated to Hounsfield units. In addition, the correlation of mechanical properties (E, σ yield, and σult) in the superior-inferior direction (the primary loading direction), to micro-architecture parameters has also been good (R2 > 0.5) for all except tissue volume, tissue surface and degree of anisotropy. Interpretation. This proves that the predictive power of bone strength and stiffness was improved with the combination of bone density and micro-architecture information. This work supports the prediction of micro-architecture using current clinical computed tomography imaging technology. © 2005 Elsevier Ltd. All rights reserved.
dc.subjectBone mechanical properties
dc.subjectBone micro-architecture
dc.subjectCancellous bone
dc.subjectPorcine bone
dc.contributor.departmentMECHANICAL ENGINEERING
dc.description.sourcetitleClinical Biomechanics
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.