Please use this identifier to cite or link to this item:
Title: On the thermodynamics of refrigerant + heterogeneous solid surfaces adsorption
Authors: Ismail, A.B.
Li, A. 
Thu, K. 
Ng, K.C. 
Chun, W.
Issue Date: 26-Nov-2013
Citation: Ismail, A.B., Li, A., Thu, K., Ng, K.C., Chun, W. (2013-11-26). On the thermodynamics of refrigerant + heterogeneous solid surfaces adsorption. Langmuir 29 (47) : 14494-14502. ScholarBank@NUS Repository.
Abstract: This Article presents a theoretical framework for the understanding of pressurized adsorption systems using the statistical rate methodology. Utilizing results from the statistical rate theory, basic thermodynamic variables including enthalpy (ha), entropy (sa), and the specific heat capacity (cp,a) of the adsorbed phase are derived using the thermodynamic requirements of chemical equilibrium, Gibbs law, as well as Maxwell relations. A built-in constant (K) describes the adsorbed molecular partition function (qs), and it captures the heterogeneous properties of the adsorbent + adsorbate pair at equilibrium states. Improved adsorbed-phase volume considerations were incorporated in the formulations of these variables where they could be utilized with relative ease for analyzing the energetic performances of any practical adsorption system. In this Article, we have demonstrated how derived thermodynamic quantities can bridge the information gap with respect to the states of adsorbed phase, as well as resolved some theoretical inconsistencies that were found in previously derived quantities. Experimentally, the adsorption isotherms of propane (refrigerant) on activated carbon powder (Maxsorb III) for temperatures from 5 to 75 C and pressures up to 8 bar are presented, and they are used to illustrate the behaviors of the adsorbed-phase during uptakes, temperatures, and pressure excursions or changes. © 2013 American Chemical Society.
Source Title: Langmuir
ISSN: 07437463
DOI: 10.1021/la403330t
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Nov 26, 2021


checked on Nov 26, 2021

Page view(s)

checked on Nov 18, 2021

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.