Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.exphem.2007.02.002
DC FieldValue
dc.titleFunctional nanofiber scaffolds with different spacers modulate adhesion and expansion of cryopreserved umbilical cord blood hematopoietic stem/progenitor cells
dc.contributor.authorChua, K.-N.
dc.contributor.authorChai, C.
dc.contributor.authorLee, P.-C.
dc.contributor.authorRamakrishna, S.
dc.contributor.authorLeong, K.W.
dc.contributor.authorMao, H.-Q.
dc.date.accessioned2014-10-07T09:05:34Z
dc.date.available2014-10-07T09:05:34Z
dc.date.issued2007-05
dc.identifier.citationChua, K.-N., Chai, C., Lee, P.-C., Ramakrishna, S., Leong, K.W., Mao, H.-Q. (2007-05). Functional nanofiber scaffolds with different spacers modulate adhesion and expansion of cryopreserved umbilical cord blood hematopoietic stem/progenitor cells. Experimental Hematology 35 (5) : 771-781. ScholarBank@NUS Repository. https://doi.org/10.1016/j.exphem.2007.02.002
dc.identifier.issn0301472X
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/85231
dc.description.abstractObjective: Nanofiber scaffolds with amino groups conjugated to fiber surface through different spacers (ethylene, butylenes, and hexylene groups, respectively) were prepared and the effect of spacer length on adhesion and expansion of umbilical cord blood hematopoietic stem/progenitor cells (HSPCs) was investigated. Materials and Methods: Electrospun polymer nanofiber scaffolds were functionalized with poly(acrylic acid) grafting, followed by conjugation of amino groups with different spacers. HSPCs were expanded on aminated scaffolds for 10 days. Cell proliferation, surface marker expression, clonogenic potential, and nonobese diabetic (NOD)/severe combined immunodeficient (SCID) repopulation potential of the expanded cells were evaluated following expansion culture. Results: Aminated nanofiber scaffolds with ethylene and butylene spacers showed high-expansion efficiencies (773- and 805-fold expansion of total cells, 200- and 235-fold expansion of CD34+CD45+ cells, respectively). HSPC proliferation on aminated scaffold with hexylene spacer was significantly lower (210-fold expansion of total cells and 86-fold expansion of CD34+CD45+ cells), but maintained the highest CD34+CD45+ cell fraction (41.1%). Colony-forming unit granulocyte-erythrocyte-monocyte-megakaryocyte and long-term culture-initiating cell maintenance was similar for HSPCs expanded on all three aminated nanofiber scaffolds; nevertheless, the NOD/SCID mice engraftment potential of HSPCs expanded on aminoethyl and aminobutyl conjugated nanofibers was significantly higher than that on aminohexyl conjugated nanofibers. Conclusion: This study demonstrated that aminated nanofibers are superior substrates for ex vivo HSPC expansion, which was correlated with the enhanced HSPC adhesion to these aminated nanofibers. The spacer, through which amino groups were conjugated to nanofiber surface, affected the expansion outcome. Our results highlighted the importance of scaffold topography and cell-substrate interaction to regulating HSPC proliferation and self-renewal in cytokine-supplemented expansion. © 2007 International Society for Experimental Hematology.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1016/j.exphem.2007.02.002
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentDUKE-NUS GRADUATE MEDICAL SCHOOL S'PORE
dc.contributor.departmentMECHANICAL ENGINEERING
dc.description.doi10.1016/j.exphem.2007.02.002
dc.description.sourcetitleExperimental Hematology
dc.description.volume35
dc.description.issue5
dc.description.page771-781
dc.description.codenEXHEB
dc.identifier.isiut000246220500008
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

104
checked on May 7, 2021

WEB OF SCIENCETM
Citations

93
checked on Apr 29, 2021

Page view(s)

115
checked on May 3, 2021

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.