Please use this identifier to cite or link to this item: https://doi.org/10.1002/nme.2720
Title: A G space theory and a weakened weak (W2) form for a unified formulation of compatible and incompatible methods: Part II applications to solid mechanics problems
Authors: Liu, G.R. 
Keywords: Compatibility
Finite element method
G space
Galerkin weak form
Meshfree method
Numerical method
Point interpolation method
Solution bound
Variational principle
Weakened weakform
Issue Date: 26-Feb-2010
Citation: Liu, G.R. (2010-02-26). A G space theory and a weakened weak (W2) form for a unified formulation of compatible and incompatible methods: Part II applications to solid mechanics problems. International Journal for Numerical Methods in Engineering 81 (9) : 1127-1156. ScholarBank@NUS Repository. https://doi.org/10.1002/nme.2720
Abstract: In part I of this paper, we have established the G space theory and fundamentals for W2 formulation. Part II focuses on the applications of the G space theory to formulate W2 models for solid mechanics problems. We first define a bilinear form, prove some of the important properties, and prove that the W2 formulation will be spatially stable, and convergent to exact solutions. We then present examples of some of the possible W2 models including the SFEM, NS-FEM, ES-FEM, NS-PIM, ES-PIM, and CS-PIM. We show the major properties of these models: (1) they are variationally consistent in a conventional sense, if the solution is sought in a proper H space (compatible cases); (2) They pass the standard patch test when the solution is sought in a proper G space with discontinuous functions (incompatible cases); (3) the stiffness of the discretized model is reduced compared with the finite element method (FEM) model and possibly to the exact model, allowing us to obtain upper bound solutions with respect to both the FEM and the exact solutions and (4) the W2 models are less sensitive to the quality of the mesh, and triangular meshes can be used without any accuracy problems. These properties and theories have been confirmed numerically via examples solved using a number of W2 models including compatible and incompatible cases. We shall see that the G space theory and the W2 forms can formulate a variety of stable and convergent numerical methods with the FEM as one special case. © 2009 John Wiley & Sons, Ltd.
Source Title: International Journal for Numerical Methods in Engineering
URI: http://scholarbank.nus.edu.sg/handle/10635/84784
ISSN: 00295981
DOI: 10.1002/nme.2720
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

85
checked on Jun 19, 2019

WEB OF SCIENCETM
Citations

69
checked on Jun 19, 2019

Page view(s)

92
checked on Jun 21, 2019

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.