Please use this identifier to cite or link to this item: https://doi.org/10.1002/elps.200600431
DC FieldValue
dc.titleA 3-D dielectrophoretic filter chip
dc.contributor.authorIlliescu, C.
dc.contributor.authorXu, G.
dc.contributor.authorLoe, F.C.
dc.contributor.authorOng, P.L.
dc.contributor.authorTay, F.E.H.
dc.date.accessioned2014-10-07T09:00:05Z
dc.date.available2014-10-07T09:00:05Z
dc.date.issued2007-04
dc.identifier.citationIlliescu, C., Xu, G., Loe, F.C., Ong, P.L., Tay, F.E.H. (2007-04). A 3-D dielectrophoretic filter chip. Electrophoresis 28 (7) : 1107-1114. ScholarBank@NUS Repository. https://doi.org/10.1002/elps.200600431
dc.identifier.issn01730835
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/84769
dc.description.abstractThe paper presents a 3-D filter chip employing both mechanical and dielectrophoretic (DEP) filtration, and its corresponding microfabrication techniques. The device structure is similar to a classical capacitor: two planar electrodes, made from a stainless steel mesh, and bonded on both sides of a glass frame filled with round silica beads. The solution with the suspension of particles flows through both the mesh-electrodes and silica beads filter. The top stainless steel mesh (with openings of 60 μm and wires of 30 μm-thickness) provides the first stage of filtration based on mechanical trapping. A second level of filtration is based on DEP by using the nonuniformities of the electric field generated in the capacitor due to the nonuniformities of the dielectric medium. The filter can work also with DC and AC electric fields. The device was tested with yeast cells (Saccharomyces cerevisae) and achieved a maximal trapping efficiency of 75% at an applied AC voltage of 200 V and a flow rate of 0.1 mL/min, from an initial concentration of cells of 5 × 105 cells/mL. When the applied frequency was varieted in the range between 20 and 200 kHz, a minimal value of capture efficiency (3%) was notticed at 50 kHz, when yeast cells exhibit negative DEP and the cells are repelled in the space between the beads. © 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1002/elps.200600431
dc.sourceScopus
dc.subjectChip
dc.subjectDielectrophoresis
dc.subjectFilter
dc.subjectMicrofabrication
dc.subjectParticle trapping
dc.typeArticle
dc.contributor.departmentMECHANICAL ENGINEERING
dc.description.doi10.1002/elps.200600431
dc.description.sourcetitleElectrophoresis
dc.description.volume28
dc.description.issue7
dc.description.page1107-1114
dc.description.codenELCTD
dc.identifier.isiut000245682000010
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.