Please use this identifier to cite or link to this item:
Title: A 3-D dielectrophoretic filter chip
Authors: Illiescu, C.
Xu, G.
Loe, F.C. 
Ong, P.L.
Tay, F.E.H. 
Keywords: Chip
Particle trapping
Issue Date: Apr-2007
Citation: Illiescu, C., Xu, G., Loe, F.C., Ong, P.L., Tay, F.E.H. (2007-04). A 3-D dielectrophoretic filter chip. Electrophoresis 28 (7) : 1107-1114. ScholarBank@NUS Repository.
Abstract: The paper presents a 3-D filter chip employing both mechanical and dielectrophoretic (DEP) filtration, and its corresponding microfabrication techniques. The device structure is similar to a classical capacitor: two planar electrodes, made from a stainless steel mesh, and bonded on both sides of a glass frame filled with round silica beads. The solution with the suspension of particles flows through both the mesh-electrodes and silica beads filter. The top stainless steel mesh (with openings of 60 μm and wires of 30 μm-thickness) provides the first stage of filtration based on mechanical trapping. A second level of filtration is based on DEP by using the nonuniformities of the electric field generated in the capacitor due to the nonuniformities of the dielectric medium. The filter can work also with DC and AC electric fields. The device was tested with yeast cells (Saccharomyces cerevisae) and achieved a maximal trapping efficiency of 75% at an applied AC voltage of 200 V and a flow rate of 0.1 mL/min, from an initial concentration of cells of 5 × 105 cells/mL. When the applied frequency was varieted in the range between 20 and 200 kHz, a minimal value of capture efficiency (3%) was notticed at 50 kHz, when yeast cells exhibit negative DEP and the cells are repelled in the space between the beads. © 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Source Title: Electrophoresis
ISSN: 01730835
DOI: 10.1002/elps.200600431
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Jan 24, 2020


checked on Jan 16, 2020

Page view(s)

checked on Jan 26, 2020

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.