Please use this identifier to cite or link to this item:
Title: Learning to rank tags
Authors: Wang, Z.
Feng, J.
Zhang, C.
Yan, S. 
Keywords: Active learning
Learning to rank tags
Semi-supervised learning
Issue Date: 2010
Citation: Wang, Z.,Feng, J.,Zhang, C.,Yan, S. (2010). Learning to rank tags. CIVR 2010 - 2010 ACM International Conference on Image and Video Retrieval : 42-49. ScholarBank@NUS Repository.
Abstract: Social images sharing websites, such as Flickr and Picasa, are becoming very popular nowadays. Users are generally recommended to annotate images with free tags, yet these tags are orderless, and thus quite limited for applications like image search, retrieval and management. In this paper, we present a novel semi-supervised learning framework to rank image tags, which learns a ranking projection with theoretic guarantee from visual words distribution to the relevant tags distribution, and then uses it for ranking new image tags. Also as the manual ranking is laborious especially for large scale data collections, we propose an active learning scheme to guide the user ranking process and efficiently obtain the informative tag ranking information. This scheme improves the overall ranking result significantly with few user feedbacks. Experiments on both image benchmark and real Flickr photo collection show the practicability and efficiency of our proposed framework, which also further improves the performance of ranked tag recommendation application. Copyright © 2010 ACM.
Source Title: CIVR 2010 - 2010 ACM International Conference on Image and Video Retrieval
ISBN: 9781450301176
DOI: 10.1145/1816041.1816049
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Jun 2, 2020

Page view(s)

checked on Jun 7, 2020

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.