Please use this identifier to cite or link to this item:
Title: Pilot-aided channel equalization in RGI-PDM-CO-OFDM systems
Authors: Li, X.
Zhong, W.-D.
Alphones, A.
Yu, C. 
Keywords: Orthogonal frequency division multiplexing
pilot-aided channel equalizer
polarization division multiplexing
Issue Date: 2013
Citation: Li, X., Zhong, W.-D., Alphones, A., Yu, C. (2013). Pilot-aided channel equalization in RGI-PDM-CO-OFDM systems. IEEE Photonics Technology Letters 25 (19) : 1924-1927. ScholarBank@NUS Repository.
Abstract: A pilot-aided channel equalizer (PACE) is proposed to mitigate the impairments caused by the polarization mode dispersion and laser phase noise simultaneously in reduced-guard-interval polarization-division-multiplexing coherent-optical orthogonal-frequency-division-multiplexing (RGI-PDM-CO-OFDM) transmission systems. Since PACE updates the channel state information symbol-by-symbol, it enables us to track the drifts in the optical channel. Adaptive PACE (APACE) and boosted PACE (BPACE) are then proposed to further improve the performance of PACE. Numerical simulations are carried out to compare the performance of APACE and BPACE with a conventional training symbols aided channel equalizer (TSACE) and adaptive decision-direct channel equalizer for a 108-Gb/s (56-GS/s) RGI-PDM-CO-OFDM system. It is revealed that both APACE and BPACE offer superior performances over the other two equalizers in the presence of laser phase noise, and they can tolerate lasers with a line width around $β=2000~{\rm k}$ ($2\π\β T-{s}=2.24\times 10$ when it is normalized to the symbol rate $1/Ts). We also show that only small additional computation efforts are required for APACE and BPACE when compared with TSACE. © 2013 IEEE.
Source Title: IEEE Photonics Technology Letters
ISSN: 10411135
DOI: 10.1109/LPT.2013.2278994
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Feb 1, 2023


checked on Feb 1, 2023

Page view(s)

checked on Jan 26, 2023

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.