Please use this identifier to cite or link to this item:
Title: Performance evaluation of electro-optic effect based graphene transistors
Authors: Gupta, G.
Abdul Jalil, M.B. 
Yu, B.
Liang, G. 
Issue Date: 21-Oct-2012
Citation: Gupta, G., Abdul Jalil, M.B., Yu, B., Liang, G. (2012-10-21). Performance evaluation of electro-optic effect based graphene transistors. Nanoscale 4 (20) : 6365-6373. ScholarBank@NUS Repository.
Abstract: Despite the advantages afforded by the unique electronic properties of graphene, the absence of a bandgap has limited its applicability in logic devices. This has led to a study on electro-optic behavior in graphene for novel device operations, beyond the conventional field effect, to meet the requirements of ultra-low power and high-speed logic transistors. Recently, two potential designs have been proposed to leverage on this effect and open a virtual bandgap for ballistic transport in the graphene channel. The first one implements a barrier in the centre of the channel, whereas the second incorporates a tilted gate junction. In this paper, we computationally evaluate the relative device performance of these two designs, in terms of subthreshold slope (SS) and I ON/I OFF ratio under different temperature and voltage bias, for a defect-free graphene channel. Our calculations employ pure optical modeling for low field electron transport under the constraints of device anatomy. The calculated results show that the two designs are functionally similar and are able to provide SS smaller than 60 mV per decade. Both designs show similar device performance but marginally top one another under different operating constraints. Our results could serve as a guide to circuit designers in selecting an appropriate design as per their system specifications and requirements. This journal is © 2012 The Royal Society of Chemistry.
Source Title: Nanoscale
ISSN: 20403364
DOI: 10.1039/c2nr31501g
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Jan 25, 2023


checked on Jan 25, 2023

Page view(s)

checked on Jan 26, 2023

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.