Please use this identifier to cite or link to this item:
https://doi.org/10.1166/jbn.2014.1836
DC Field | Value | |
---|---|---|
dc.title | Nanoscale helium ion microscopic analysis of collagen fibrillar changes following femtosecond laser dissection of human cornea | |
dc.contributor.author | Riau, A.K. | |
dc.contributor.author | Poh, R. | |
dc.contributor.author | Pickard, D.S. | |
dc.contributor.author | Park, C.H.J. | |
dc.contributor.author | Chaurasia, S.S. | |
dc.contributor.author | Mehta, J.S. | |
dc.date.accessioned | 2014-10-07T04:32:58Z | |
dc.date.available | 2014-10-07T04:32:58Z | |
dc.date.issued | 2014 | |
dc.identifier.citation | Riau, A.K., Poh, R., Pickard, D.S., Park, C.H.J., Chaurasia, S.S., Mehta, J.S. (2014). Nanoscale helium ion microscopic analysis of collagen fibrillar changes following femtosecond laser dissection of human cornea. Journal of Biomedical Nanotechnology 10 (8) : 1552-1562. ScholarBank@NUS Repository. https://doi.org/10.1166/jbn.2014.1836 | |
dc.identifier.issn | 15507041 | |
dc.identifier.uri | http://scholarbank.nus.edu.sg/handle/10635/82742 | |
dc.description.abstract | Over the last decade, femtosecond lasers have emerged as an important tool to perform accurate and fine dissections with minimal collateral damage in biological tissue. The most common surgical procedure in medicine utilizing femtosecond laser is LASIK. During the femtosecond laser dissection process, the corneal collagen fibers inevitably undergo biomechanical and thermal changes on a sub-micro- or even a nanoscale level, which can potentially lead to post-surgical complications. In this study, we utilized helium ion microscopy, complemented with transmission electron microscopy to examine the femtosecond laser-induced collagen fibrillar damage in ex vivo human corneas. We found that the biomechanical damage induced by laser etching, generation of tissue bridges, and expansion of cavitation bubble and its subsequent collapse, created distortion to the surrounding collagen lamellae. Femtosecond laser-induced thermal damage was characterized by collapsed collagen lamellae, loss of collagen banding, collagen coiling, and presence of spherical debris. Our findings have shown the ability of helium ion microscopy to provide high resolution images with unprecedented detail of nanoscale fibrillar morphological changes in order to assess a tissue damage, which could not be resolved by conventional scanning electron microscopy previously. This imaging technology has also given us a better understanding of the tissue-laser interactions in a nano-structural manner and their possible effects on post-operative wound recovery. Copyright © 2014 American Scientific Publishers All rights reserved. | |
dc.description.uri | http://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1166/jbn.2014.1836 | |
dc.source | Scopus | |
dc.subject | Cavitation bubble | |
dc.subject | Collagen | |
dc.subject | Cornea | |
dc.subject | Femtosecond laser | |
dc.subject | Helium ion microscopy | |
dc.subject | LASIK | |
dc.subject | Photodisruption | |
dc.subject | Plasma | |
dc.type | Article | |
dc.contributor.department | ELECTRICAL & COMPUTER ENGINEERING | |
dc.contributor.department | DUKE-NUS GRADUATE MEDICAL SCHOOL S'PORE | |
dc.description.doi | 10.1166/jbn.2014.1836 | |
dc.description.sourcetitle | Journal of Biomedical Nanotechnology | |
dc.description.volume | 10 | |
dc.description.issue | 8 | |
dc.description.page | 1552-1562 | |
dc.identifier.isiut | 000334414000015 | |
Appears in Collections: | Staff Publications |
Show simple item record
Files in This Item:
There are no files associated with this item.
SCOPUSTM
Citations
12
checked on Mar 24, 2023
WEB OF SCIENCETM
Citations
10
checked on Mar 24, 2023
Page view(s)
241
checked on Mar 16, 2023
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.