Please use this identifier to cite or link to this item:
Title: Mode conversion from quantized to propagating spin waves in a rhombic antidot lattice supporting spin wave nanochannels
Authors: Tacchi, S.
Botters, B.
Madami, M.
Kłos, J.W.
Sokolovskyy, M.L.
Krawczyk, M.
Gubbiotti, G.
Carlotti, G.
Adeyeye, A.O. 
Neusser, S.
Grundler, D.
Issue Date: 17-Jul-2012
Citation: Tacchi, S., Botters, B., Madami, M., Kłos, J.W., Sokolovskyy, M.L., Krawczyk, M., Gubbiotti, G., Carlotti, G., Adeyeye, A.O., Neusser, S., Grundler, D. (2012-07-17). Mode conversion from quantized to propagating spin waves in a rhombic antidot lattice supporting spin wave nanochannels. Physical Review B - Condensed Matter and Materials Physics 86 (1) : -. ScholarBank@NUS Repository.
Abstract: We report spin wave excitations in a nanopatterned antidot lattice fabricated from a 30-nm thick Ni 80Fe 20 film. The 250-nm-wide circular holes are arranged in a rhombic unit cell with a lattice constant of 400 nm. By Brillouin light scattering, we find that quantized spin wave modes transform to propagating ones and vice versa by changing the in-plane orientation of the applied magnetic field H by 30. Spin waves of either negative or positive group velocity are found. In the latter case, they propagate in narrow channels exhibiting a width of below 100 nm. We use the plane wave method to calculate the spin wave dispersions for the two relevant orientations of H. The theory allows us to explain the wave-vector-dependent characteristics of the prominent modes. Allowed minibands are formed for selected modes only for specific orientations of H and wave vector. The results are important for applications such as spin wave filters and interconnected waveguides in the emerging field of magnonics where the control of spin wave propagation on the nanoscale is key. © 2012 American Physical Society.
Source Title: Physical Review B - Condensed Matter and Materials Physics
ISSN: 10980121
DOI: 10.1103/PhysRevB.86.014417
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Jan 27, 2023


checked on Jan 27, 2023

Page view(s)

checked on Jan 26, 2023

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.