Please use this identifier to cite or link to this item:
Title: Germanium-tin + junction formed using phosphorus ion implant and 400 °c rapid thermal anneal
Authors: Wang, L.
Su, S.
Wang, W.
Yang, Y.
Tong, Y.
Liu, B.
Guo, P.
Gong, X.
Zhang, G.
Xue, C.
Cheng, B.
Han, G. 
Yeo, Y.-C. 
Keywords: Dopant activation
n + junction
Issue Date: 2012
Citation: Wang, L., Su, S., Wang, W., Yang, Y., Tong, Y., Liu, B., Guo, P., Gong, X., Zhang, G., Xue, C., Cheng, B., Han, G., Yeo, Y.-C. (2012). Germanium-tin + junction formed using phosphorus ion implant and 400 °c rapid thermal anneal. IEEE Electron Device Letters 33 (11) : 1529-1531. ScholarBank@NUS Repository.
Abstract: A Ge 0.976 Sn 0.024 n +/p diode was formed using phosphorus ion P + implant and rapid thermal annealing at 400 °C. Activation of P in Ge typically requires high temperatures (e.g., 700 °C), and it was found that this is not needed in the presence of a small amount of Sn. A high forward bias current of 320 A/cm 2 at-1 V is achieved for the Ge 0.976 Sn 0.024n +/diode. This is four times higher than that of the Ge n +/p control diode, which received the same P + implant but activated at 700 °C. The n +-GeSn region has a high active dopant concentration of 2.1 × \10 19cm -3, much higher than that in the Ge control. The increased active dopant concentration in GeSn reduces the width of the tunneling barrier between the Al contact and the n +-GeSn and increases the forward bias diode current. Enhancement of P activation in Ge 0.976 Sn 0.024 could possibly be as a result of passivation of vacancies in the Ge lattice due to Sn atoms. © 2012 IEEE.
Source Title: IEEE Electron Device Letters
ISSN: 07413106
DOI: 10.1109/LED.2012.2212871
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Jan 24, 2023


checked on Jan 24, 2023

Page view(s)

checked on Jan 26, 2023

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.