Please use this identifier to cite or link to this item: https://doi.org/10.1109/TED.2010.2065809
DC FieldValue
dc.titleDevice physics and characteristics of graphene nanoribbon tunneling FETs
dc.contributor.authorChin, S.-K.
dc.contributor.authorSeah, D.
dc.contributor.authorLam, K.-T.
dc.contributor.authorSamudra, G.S.
dc.contributor.authorLiang, G.
dc.date.accessioned2014-10-07T04:25:58Z
dc.date.available2014-10-07T04:25:58Z
dc.date.issued2010-11
dc.identifier.citationChin, S.-K., Seah, D., Lam, K.-T., Samudra, G.S., Liang, G. (2010-11). Device physics and characteristics of graphene nanoribbon tunneling FETs. IEEE Transactions on Electron Devices 57 (11) : 3144-3152. ScholarBank@NUS Repository. https://doi.org/10.1109/TED.2010.2065809
dc.identifier.issn00189383
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/82148
dc.description.abstractWe present a detailed simulation study on the currentvoltage characteristics of ballistic graphene nanoribbon (GNR) tunneling FETs of different widths with varying temperatures and channel length. Our model uses the self-consistent nonequilibrium Green's function and the quasi-2-D Poisson solver with the material details of the GNRs modeled by the uncoupled mode space Dirac equation. We find that, in general, the GNR tunneling FETs from the 3p + 1 family have better ION/IOFF characteristics than those from the 3p family due to smaller effective masses of the former. A lower drain doping concentration relative to that of the source enhances the I ON/IOFF. Most significantly, we find that a higher doping concentration at the source enhances ION but degrades the subthreshold swing (SS). As a function of temperature, the SS shows highly nonlinear behaviors. In terms of intrinsic delay and power-delay product, the GNR tunneling FETs show very promising scaling behaviors and can be optimized to meet the International Technology Roadmap for Semiconductors roadmap requirements through adjustment in doping concentrations and other parameters. © 2010 IEEE.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1109/TED.2010.2065809
dc.sourceScopus
dc.subjectDirac equation
dc.subjectgraphene nanoribbons (GNR)
dc.subjectnonequilibrium Green's function (NEGF)
dc.subjecttunneling FET
dc.typeArticle
dc.contributor.departmentELECTRICAL & COMPUTER ENGINEERING
dc.description.doi10.1109/TED.2010.2065809
dc.description.sourcetitleIEEE Transactions on Electron Devices
dc.description.volume57
dc.description.issue11
dc.description.page3144-3152
dc.description.codenIETDA
dc.identifier.isiut000283446600046
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

41
checked on Jan 27, 2020

WEB OF SCIENCETM
Citations

36
checked on Jan 20, 2020

Page view(s)

48
checked on Jan 26, 2020

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.