Please use this identifier to cite or link to this item:
https://doi.org/10.1016/j.neucom.2013.06.052
Title: | A brain-inspired spiking neural network model with temporal encoding and learning | Authors: | Yu, Q. Tang, H. Tan, K.C. Yu, H. |
Keywords: | Cognitive memory Pattern recognition Spiking neural networks (SNNs) Temporal encoding Temporal learning |
Issue Date: | 22-Aug-2014 | Citation: | Yu, Q., Tang, H., Tan, K.C., Yu, H. (2014-08-22). A brain-inspired spiking neural network model with temporal encoding and learning. Neurocomputing 138 : 3-13. ScholarBank@NUS Repository. https://doi.org/10.1016/j.neucom.2013.06.052 | Abstract: | Neural coding and learning are important components in cognitive memory system, by processing the sensory inputs and distinguishing different patterns to allow for higher level brain functions such as memory storage and retrieval. Benefitting from biological relevance, this paper presents a spiking neural network of leaky integrate-and-fire (LIF) neurons for pattern recognition. A biologically plausible supervised synaptic learning rule is used so that neurons can efficiently make a decision. The whole system contains encoding, learning and readout. Utilizing the temporal coding and learning, networks of spiking neurons can effectively and efficiently perform various classification tasks. It can classify complex patterns of activities stored in a vector, as well as the real-world stimuli. Our approach is also benchmarked on the nonlinearly separable Iris dataset. The proposed approach achieves a good generalization, with a classification accuracy of 99.63% for training and 92.55% for testing. In addition, the trained networks demonstrate that the temporal coding is a viable means for fast neural information processing. © 2014 Elsevier B.V. | Source Title: | Neurocomputing | URI: | http://scholarbank.nus.edu.sg/handle/10635/81842 | ISSN: | 18728286 | DOI: | 10.1016/j.neucom.2013.06.052 |
Appears in Collections: | Staff Publications |
Show full item record
Files in This Item:
There are no files associated with this item.
SCOPUSTM
Citations
92
checked on Jan 30, 2023
WEB OF SCIENCETM
Citations
74
checked on Jan 30, 2023
Page view(s)
710
checked on Feb 2, 2023
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.