Please use this identifier to cite or link to this item: https://doi.org/10.1016/0262-8856(95)01065-3
DC FieldValue
dc.titleInvariant object recognition using a neural template classifier
dc.contributor.authorTang, H.W.
dc.contributor.authorSrinivasan, V.
dc.contributor.authorOng, S.H.
dc.date.accessioned2014-10-07T02:59:35Z
dc.date.available2014-10-07T02:59:35Z
dc.date.issued1996-07
dc.identifier.citationTang, H.W., Srinivasan, V., Ong, S.H. (1996-07). Invariant object recognition using a neural template classifier. Image and Vision Computing 14 (7) : 473-483. ScholarBank@NUS Repository. https://doi.org/10.1016/0262-8856(95)01065-3
dc.identifier.issn02628856
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/80628
dc.description.abstractThis paper describes an efficient two-stage neural network for invariant object recognition. It consists of a feature extractor trained by an ART-like fast saturation learning scheme and a delta-rule trained classifier. Objects, represented as edge strength maps derived from raw input images, are scaled to a normalized size and rotated in discrete steps to generate a sequence of localized input feature vectors. The network outputs identify the object and permit the calculation of a confidence level. Experiments show that the system works well even when there is noise and occlusion.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1016/0262-8856(95)01065-3
dc.sourceScopus
dc.subjectInvariance
dc.subjectNeural networks
dc.subjectObject recognition
dc.subjectTemplate classifier
dc.typeArticle
dc.contributor.departmentELECTRICAL ENGINEERING
dc.description.doi10.1016/0262-8856(95)01065-3
dc.description.sourcetitleImage and Vision Computing
dc.description.volume14
dc.description.issue7
dc.description.page473-483
dc.description.codenIVCOD
dc.identifier.isiutA1996UT58400003
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.