Please use this identifier to cite or link to this item:
Title: Evaluation of methods for modeling transcription factor sequence specificity
Authors: Weirauch, M.T.
Cote, A.
Norel, R.
Annala, M.
Zhao, Y.
Riley, T.R.
Saez-Rodriguez, J.
Cokelaer, T.
Vedenko, A.
Talukder, S.
Bussemaker, H.J.
Quaid, M.D.
Bulyk, M.L.
Stolovitzky, G.
Hughes, T.R.
Agius, P.
Arvey, A.
Bucher, P.
Callan Jr., C.G.
Chang, C.W.
Chen, C.-Y.
Chen, Y.-S.
Chu, Y.-W.
Grau, J.
Grosse, I.
Jagannathan, V.
Keilwagen, J.
Kiebasa, S.M.
Kinney, J.B.
Klein, H.
Kursa, M.B.
Lähdesmäki, H.
Laurila, K.
Lei, C.
Leslie, C.
Linhart, C.
Murugan, A.
Myšičková, A.
Noble, W.S.
Nykter, M.
Orenstein, Y.
Posch, S.
Ruan, J.
Rudnicki, W.R.
Schmid, C.D.
Shamir, R.
Sung, W.-K. 
Vingron, M.
Zhang, Z.
Issue Date: Feb-2013
Citation: Weirauch, M.T., Cote, A., Norel, R., Annala, M., Zhao, Y., Riley, T.R., Saez-Rodriguez, J., Cokelaer, T., Vedenko, A., Talukder, S., Bussemaker, H.J., Quaid, M.D., Bulyk, M.L., Stolovitzky, G., Hughes, T.R., Agius, P., Arvey, A., Bucher, P., Callan Jr., C.G., Chang, C.W., Chen, C.-Y., Chen, Y.-S., Chu, Y.-W., Grau, J., Grosse, I., Jagannathan, V., Keilwagen, J., Kiebasa, S.M., Kinney, J.B., Klein, H., Kursa, M.B., Lähdesmäki, H., Laurila, K., Lei, C., Leslie, C., Linhart, C., Murugan, A., Myšičková, A., Noble, W.S., Nykter, M., Orenstein, Y., Posch, S., Ruan, J., Rudnicki, W.R., Schmid, C.D., Shamir, R., Sung, W.-K., Vingron, M., Zhang, Z. (2013-02). Evaluation of methods for modeling transcription factor sequence specificity. Nature Biotechnology 31 (2) : 126-134. ScholarBank@NUS Repository.
Abstract: Genomic analyses often involve scanning for potential transcription factor (TF) binding sites using models of the sequence specificity of DNA binding proteins. Many approaches have been developed to model and learn a protein's DNA-binding specificity, but these methods have not been systematically compared. Here we applied 26 such approaches to in vitro protein binding microarray data for 66 mouse TFs belonging to various families. For nine TFs, we also scored the resulting motif models on in vivo data, and found that the best in vitro-derived motifs performed similarly to motifs derived from the in vivo data. Our results indicate that simple models based on mononucleotide position weight matrices trained by the best methods perform similarly to more complex models for most TFs examined, but fall short in specific cases (<10% of the TFs examined here). In addition, the best-performing motifs typically have relatively low information content, consistent with widespread degeneracy in eukaryotic TF sequence preferences. © 2013 Nature America, Inc. All rights reserved.
Source Title: Nature Biotechnology
ISSN: 10870156
DOI: 10.1038/nbt.2486
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Jun 22, 2021


checked on Jun 22, 2021

Page view(s)

checked on Jun 21, 2021

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.