Please use this identifier to cite or link to this item:
Title: Control of muscle differentiation by a mitochondria-targeted fluorophore
Authors: Kim, Y.K. 
Ha, H.-H. 
Lee, J.-S. 
Bi, X.
Ahn, Y.-H.
Hajar, S.
Lee, J.-J.
Chang, Y.-T. 
Issue Date: 20-Jan-2010
Citation: Kim, Y.K., Ha, H.-H., Lee, J.-S., Bi, X., Ahn, Y.-H., Hajar, S., Lee, J.-J., Chang, Y.-T. (2010-01-20). Control of muscle differentiation by a mitochondria-targeted fluorophore. Journal of the American Chemical Society 132 (2) : 576-579. ScholarBank@NUS Repository.
Abstract: During muscle differentiation, mitochondria undergo dramatic changes in their morphology and distribution to prepare for the higher rate of energy consumption. By applying a mitochondria-targeted rosamine library in C2C12 myogenesis, we discovered one compound that controls muscle differentiation. When treated to undifferentiated myoblasts, our selected compound, B25, inhibited myotube formation, and when treated to fully differentiated myotubes, it induced fission of multinucleated myotubes into mononucleated fragments. Compared to myoseverin, which is known for inducing myotube fission by destabilizing microtubules, B25 affects neither microtubule stability nor cell cycle. Further investigation identified that B25 induces myotube fission through the activation of NF-κB, which is one of the important signaling pathways linked to skeletal muscle differentiation. So far, the use of small-molecule fluorophores is limited in the discovery of labeling agents or sensors. In addition to their potential as a sensor, here we show the application of fluorescent small molecules in the discovery of a bioactive probe that induces a specific cellular response. © 2010 American Chemical Society.
Source Title: Journal of the American Chemical Society
ISSN: 00027863
DOI: 10.1021/ja906862g
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Jun 5, 2023


checked on Jun 5, 2023

Page view(s)

checked on May 25, 2023

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.