Please use this identifier to cite or link to this item: https://doi.org/10.1007/978-3-540-87442-3_104
DC FieldValue
dc.titleAn analytical adaptive single-neuron compensation control law for nonlinear process
dc.contributor.authorJia, L.
dc.contributor.authorTao, P.-Y.
dc.contributor.authorChen, G.-B.
dc.contributor.authorChiu, M.-S.
dc.date.accessioned2014-06-19T06:12:55Z
dc.date.available2014-06-19T06:12:55Z
dc.date.issued2008
dc.identifier.citationJia, L.,Tao, P.-Y.,Chen, G.-B.,Chiu, M.-S. (2008). An analytical adaptive single-neuron compensation control law for nonlinear process. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 5226 LNCS : 850-857. ScholarBank@NUS Repository. <a href="https://doi.org/10.1007/978-3-540-87442-3_104" target="_blank">https://doi.org/10.1007/978-3-540-87442-3_104</a>
dc.identifier.isbn3540874402
dc.identifier.issn03029743
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/74479
dc.description.abstractTo circumvent the drawbacks in nonlinear controller designing of chemical processes, an analytical adaptive single-neuron compensation control scheme is proposed in this paper. A class of nonlinear processes with modest nonlinearities is approximated by a composite model consisting a linear ARX model and a fuzzy neural network-based linearization error model. Motivated by the conventional feedforward control design technique in process industries, the output of FNNM can be viewed as measurable disturbance and a compensator can be designed to eliminate the disturbance influence. Simulation results show that the adaptive single-neuron compensation control plays a major role in improving the control performance, and the proposed adaptive control possesses better performance. © 2008 Springer-Verlag Berlin Heidelberg.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1007/978-3-540-87442-3_104
dc.sourceScopus
dc.subjectAnalytical
dc.subjectCompensator
dc.subjectComposite model
dc.subjectSingle-neuron
dc.typeConference Paper
dc.contributor.departmentCHEMICAL & BIOMOLECULAR ENGINEERING
dc.description.doi10.1007/978-3-540-87442-3_104
dc.description.sourcetitleLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.description.volume5226 LNCS
dc.description.page850-857
dc.identifier.isiutNOT_IN_WOS
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.