Please use this identifier to cite or link to this item:
https://doi.org/10.1007/978-3-540-87442-3_104
DC Field | Value | |
---|---|---|
dc.title | An analytical adaptive single-neuron compensation control law for nonlinear process | |
dc.contributor.author | Jia, L. | |
dc.contributor.author | Tao, P.-Y. | |
dc.contributor.author | Chen, G.-B. | |
dc.contributor.author | Chiu, M.-S. | |
dc.date.accessioned | 2014-06-19T06:12:55Z | |
dc.date.available | 2014-06-19T06:12:55Z | |
dc.date.issued | 2008 | |
dc.identifier.citation | Jia, L.,Tao, P.-Y.,Chen, G.-B.,Chiu, M.-S. (2008). An analytical adaptive single-neuron compensation control law for nonlinear process. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 5226 LNCS : 850-857. ScholarBank@NUS Repository. <a href="https://doi.org/10.1007/978-3-540-87442-3_104" target="_blank">https://doi.org/10.1007/978-3-540-87442-3_104</a> | |
dc.identifier.isbn | 3540874402 | |
dc.identifier.issn | 03029743 | |
dc.identifier.uri | http://scholarbank.nus.edu.sg/handle/10635/74479 | |
dc.description.abstract | To circumvent the drawbacks in nonlinear controller designing of chemical processes, an analytical adaptive single-neuron compensation control scheme is proposed in this paper. A class of nonlinear processes with modest nonlinearities is approximated by a composite model consisting a linear ARX model and a fuzzy neural network-based linearization error model. Motivated by the conventional feedforward control design technique in process industries, the output of FNNM can be viewed as measurable disturbance and a compensator can be designed to eliminate the disturbance influence. Simulation results show that the adaptive single-neuron compensation control plays a major role in improving the control performance, and the proposed adaptive control possesses better performance. © 2008 Springer-Verlag Berlin Heidelberg. | |
dc.description.uri | http://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1007/978-3-540-87442-3_104 | |
dc.source | Scopus | |
dc.subject | Analytical | |
dc.subject | Compensator | |
dc.subject | Composite model | |
dc.subject | Single-neuron | |
dc.type | Conference Paper | |
dc.contributor.department | CHEMICAL & BIOMOLECULAR ENGINEERING | |
dc.description.doi | 10.1007/978-3-540-87442-3_104 | |
dc.description.sourcetitle | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | |
dc.description.volume | 5226 LNCS | |
dc.description.page | 850-857 | |
dc.identifier.isiut | NOT_IN_WOS | |
Appears in Collections: | Staff Publications |
Show simple item record
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.