Please use this identifier to cite or link to this item: https://doi.org/10.1109/IECON.2011.6120012
DC FieldValue
dc.titleIntelligent identification of manufacturing operations using in-situ energy measurement in industrial injection moulding machines
dc.contributor.authorChee, X.M.
dc.contributor.authorLe, C.V.
dc.contributor.authorZhang, D.H.
dc.contributor.authorLuo, M.
dc.contributor.authorPang, C.K.
dc.date.accessioned2014-06-19T03:14:27Z
dc.date.available2014-06-19T03:14:27Z
dc.date.issued2011
dc.identifier.citationChee, X.M.,Le, C.V.,Zhang, D.H.,Luo, M.,Pang, C.K. (2011). Intelligent identification of manufacturing operations using in-situ energy measurement in industrial injection moulding machines. IECON Proceedings (Industrial Electronics Conference) : 4284-4289. ScholarBank@NUS Repository. <a href="https://doi.org/10.1109/IECON.2011.6120012" target="_blank">https://doi.org/10.1109/IECON.2011.6120012</a>
dc.identifier.isbn9781612849720
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/70638
dc.description.abstractIn energy-efficient and sustainable manufacturing systems, a good understanding of energy consumption in context of manufacturing operations is required. In this paper, we propose a generic framework for online identification of manufacturing operation states based on real-time energy data. Using Discrete Wavelet Transform (DWT) and modified universal threshold filter, time-series data is segmented by detecting stepwise changes. A two-stage Fuzzy C-Means (FCM) is then used to cluster extracted segments according to manufacturing operation states. As such, the online identification is carried out based on Euclidean distance of the incoming segments to cluster centroids. An implementation of our proposed framework on industrial injection moulding machines is presented with intensive analysis and discussion. © 2011 IEEE.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1109/IECON.2011.6120012
dc.sourceScopus
dc.subjectDiscrete Wavelet Transform (DWT)
dc.subjectFuzzy C-Means (FCM)
dc.subjectMean Absolute Deviation (MAD)
dc.subjectNon-Intrusive Load Monitoring (NILM)
dc.typeConference Paper
dc.contributor.departmentELECTRICAL & COMPUTER ENGINEERING
dc.description.doi10.1109/IECON.2011.6120012
dc.description.sourcetitleIECON Proceedings (Industrial Electronics Conference)
dc.description.page4284-4289
dc.description.codenIEPRE
dc.identifier.isiutNOT_IN_WOS
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

7
checked on Mar 17, 2023

Page view(s)

121
checked on Mar 16, 2023

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.