Please use this identifier to cite or link to this item:
Title: Detection of epileptic spike-wave discharges using SVM
Authors: Pan, Y.
Ge, S.S. 
Tang, F.R.
Al Mamun, A. 
Issue Date: 2007
Citation: Pan, Y.,Ge, S.S.,Tang, F.R.,Al Mamun, A. (2007). Detection of epileptic spike-wave discharges using SVM. Proceedings of the IEEE International Conference on Control Applications : 467-472. ScholarBank@NUS Repository.
Abstract: In this work, support vector machine (SVM) is applied for detecting epileptic spikes and sharp waves in EEG signal. EEG data are obtained from two-channels EEG monitor on Swiss mice. Our technique maps these intracranial electroencephalogram (EEG) time series into corresponding novelty sequences by classifying short-time, energy based statistics computed from one-second windows of data. Numeric simulation studies demonstrate the effect of the SVM detection, and a comparison between SVM and artificial neural network with back-propagation algorithm is presented to show the advantages of SVM algorithm for detecting epileptic spikewave discharge in EEG time series. © 2007 IEEE.
Source Title: Proceedings of the IEEE International Conference on Control Applications
ISBN: 1424404436
DOI: 10.1109/CCA.2007.4389275
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.