Please use this identifier to cite or link to this item: https://scholarbank.nus.edu.sg/handle/10635/69560
DC FieldValue
dc.titleCardiac state diagnosis using adaptive neuro-fuzzy technique
dc.contributor.authorKannathal, N.
dc.contributor.authorPuthusserypady, S.K.
dc.contributor.authorLim, C.M.
dc.contributor.authorAcharya, R.U.
dc.contributor.authorLaxminarayan, S.
dc.date.accessioned2014-06-19T03:02:04Z
dc.date.available2014-06-19T03:02:04Z
dc.date.issued2005
dc.identifier.citationKannathal, N.,Puthusserypady, S.K.,Lim, C.M.,Acharya, R.U.,Laxminarayan, S. (2005). Cardiac state diagnosis using adaptive neuro-fuzzy technique. Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings 7 VOLS : 3864-3867. ScholarBank@NUS Repository.
dc.identifier.isbn0780387406
dc.identifier.issn05891019
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/69560
dc.description.abstractHeart rate signals may either contain indicators of a current disease or even warnings about impending diseases. However, to manually study and pinpoint heart abnormalities in voluminous data is strenuous and time consuming. Here, an adaptive neuro-fuzzy network is used to classify heart abnormalities in ten different cardiac states and shown to be effective. © 2005 IEEE.
dc.sourceScopus
dc.subjectAdaptive neuro-fuzzy inference system
dc.subjectHeart rate
dc.subjectLLE
dc.subjectSD1/SD2
dc.subjectSE
dc.typeConference Paper
dc.contributor.departmentELECTRICAL & COMPUTER ENGINEERING
dc.description.sourcetitleAnnual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings
dc.description.volume7 VOLS
dc.description.page3864-3867
dc.description.codenCEMBA
dc.identifier.isiutNOT_IN_WOS
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.