Please use this identifier to cite or link to this item:
Title: A novel approach of carbon embedding in magnetic media for future head/disk interface
Authors: Abdul Samad, M. 
Xiong, S.
Pan, L.
Yang, H. 
Sinha, S.K. 
Bogy, D.B.
Bhatia, C.S. 
Keywords: Carbon embedding
magnetic media
Issue Date: May-2012
Citation: Abdul Samad, M., Xiong, S., Pan, L., Yang, H., Sinha, S.K., Bogy, D.B., Bhatia, C.S. (2012-05). A novel approach of carbon embedding in magnetic media for future head/disk interface. IEEE Transactions on Magnetics 48 (5 PART 1) : 1807-1812. ScholarBank@NUS Repository.
Abstract: A novel method of carbon embedding (≤1 nm) is used as a surface modification technique to produce overcoat free media surfaces. The filtered cathodic vacuum arc technique at ion energy of 90 eV is used to embed carbon in the top surface of a ∼25 nm iron/platinum (FePt) film. Transport of ions in matter (TRIM) simulations and X-ray photoelectron spectroscopy (XPS) are used to study carbon embedding profiles and surface chemical composition. XPS results show that carbon embedding is effective in improving the oxidation resistance of FePt. Conductive atomic force microscopy (CAFM) is done on samples after exposure to a 780 nm IR laser with an effective output power of 40 mW to study the thermal stability. No change in the conductivity is observed in the case of carbon embedded FePt surface. Ball-on-disk tribological tests are conducted at a contact pressure of 0.26 GPa on bare and modified FePt surfaces. It is observed that the coefficient of friction is reduced considerably from a value of approximately 0.8 to ∼0.27 after the surface modification. © 2012 IEEE.
Source Title: IEEE Transactions on Magnetics
ISSN: 00189464
DOI: 10.1109/TMAG.2011.2170826
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Apr 4, 2020


checked on Mar 19, 2020

Page view(s)

checked on Mar 30, 2020

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.