Please use this identifier to cite or link to this item:
Title: Neuroanatomical asymmetry patterns in individuals with schizophrenia and their non-psychotic siblings
Authors: Qiu, A. 
Wang, L.
Younes, L.
Harms, M.P.
Ratnanather, J.T.
Miller, M.I.
Csernansky, J.G.
Keywords: Large deformation diffeomorphic metric mapping
Magnetic resonance imaging
Parallel transport
Shape asymmetry
Subcortical structures
Issue Date: 1-Oct-2009
Citation: Qiu, A., Wang, L., Younes, L., Harms, M.P., Ratnanather, J.T., Miller, M.I., Csernansky, J.G. (2009-10-01). Neuroanatomical asymmetry patterns in individuals with schizophrenia and their non-psychotic siblings. NeuroImage 47 (4) : 1221-1229. ScholarBank@NUS Repository.
Abstract: Neuroanatomical endophenotypes may reveal insights into the processes by which genetic factors increase the risk of developing schizophrenia. To determine whether patterns of neuroanatomical asymmetries may be useful as schizophrenia-related endophenotypes, we compared patterns of structural asymmetries in patients with schizophrenia, healthy controls, and their respective siblings. The surfaces of the left and right amygdala, hippocampus, thalamus, caudate nucleus, putamen, globus pallidus, and nucleus accumbens were assessed in 40 pairs of healthy comparison controls (CON) and their siblings (CON-SIB) and 25 pairs of patients with schizophrenia (SCZ) and their siblings (SCZ-SIB) in magnetic resonance (MR) images using large deformation diffeomorphic metric mapping (LDDMM) and parallel transport techniques. The within-subject asymmetry deformation of each structure was first measured via LDDMM, and then translated to a global template via parallel transport for evaluation of the patterns of asymmetry both within and across siblings. Our results revealed that asymmetries observed in CON subjects occurred in the amygdala and the anterior segment of the hippocampus with more pronounced expansion deformation in the right-sided structures (R > L asymmetry) but not in the basal ganglia and thalamus. Disturbance in this pattern of asymmetries was observed in both SCZ and SCZ-SIB subjects. More specifically, exaggerations and reductions in the normative pattern of asymmetries were observed in the amygdala-hippocampus formation, basal ganglia, and thalamus. These altered patterns of asymmetries are present in subjects with schizophrenia and their siblings, and therefore may represent a schizophrenia-related endophenotype. © 2009 Elsevier Inc.
Source Title: NeuroImage
ISSN: 10538119
DOI: 10.1016/j.neuroimage.2009.05.054
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Jul 27, 2021


checked on Jul 20, 2021

Page view(s)

checked on Jul 16, 2021

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.