Please use this identifier to cite or link to this item: https://doi.org/10.1177/0885328211402243
DC FieldValue
dc.titleDevelopment of a pre-vascularized 3D scaffold-hydrogel composite graft using an arterio-venous loop for tissue engineering applications
dc.contributor.authorRath, S.N.
dc.contributor.authorArkudas, A.
dc.contributor.authorLam, C.X.
dc.contributor.authorOlkowski, R.
dc.contributor.authorPolykandroitis, E.
dc.contributor.authorChróścicka, A.
dc.contributor.authorBeier, J.P.
dc.contributor.authorHorch, R.E.
dc.contributor.authorHutmacher, D.W.
dc.contributor.authorKneser, U.
dc.date.accessioned2014-06-17T09:43:15Z
dc.date.available2014-06-17T09:43:15Z
dc.date.issued2012-09
dc.identifier.citationRath, S.N., Arkudas, A., Lam, C.X., Olkowski, R., Polykandroitis, E., Chróścicka, A., Beier, J.P., Horch, R.E., Hutmacher, D.W., Kneser, U. (2012-09). Development of a pre-vascularized 3D scaffold-hydrogel composite graft using an arterio-venous loop for tissue engineering applications. Journal of Biomaterials Applications 27 (3) : 277-289. ScholarBank@NUS Repository. https://doi.org/10.1177/0885328211402243
dc.identifier.issn08853282
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/67002
dc.description.abstractHyaluronic acid (HA) and fibrin glue (FG) are effective hydrogels for tissue engineering applications as they support tissue in-growth, retain growth factors, and release them slowly with time. The scaffolds, in combination with a hydrogel, effectuate a successful graft. However, the survival of a graft entirely depends upon a functional vascular supply. Therefore, hydrogels must support the in-growing vasculature. To study and compare the vascular patterns, HA and FG hydrogel-containing PLDLLA-TCP-PCL scaffolds were implanted in the groin of male Lewis rats and supplied with a micro-surgically prepared arterio-venous (A-V) loop. The rats were perfused with a vascular contrast media after 4 and 8 weeks and sacrificed for further analysis. The specimens were scanned with micro-CT to find the vascular growth patterns. Corrosion casting of blood vessels followed by SEM demonstrated a high vascular density near the parent blood vessels. Histologically, HA and FG implanted animal groups showed significant angiogenetic activity, especially within the pores of the scaffold. However, formation of new blood vessels was more conspicuously observed at 4 weeks in FG than HA implants. Furthermore, by 8 weeks, the number and pattern of blood vessels were comparable between them. At this time, HA was still present indicating its slow degradation. The finding was confirmed by histomorphometric analysis. This experimental study demonstrates that HA containing composite scaffold systems permit stabile in-growth of blood vessels due to sustained degradation over 8 weeks. HA is a potential matrix for a tissue engineered composite graft. © The Author(s) 2011.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1177/0885328211402243
dc.sourceScopus
dc.subjectangiogenesis
dc.subjectArterio-venous loop model
dc.subjectfibrin gel
dc.subjecthyaluronic acid
dc.subjectmicrovascular CT scanning
dc.subjectPLDLLA-TCP-PCL
dc.typeArticle
dc.contributor.departmentBIOENGINEERING
dc.description.doi10.1177/0885328211402243
dc.description.sourcetitleJournal of Biomaterials Applications
dc.description.volume27
dc.description.issue3
dc.description.page277-289
dc.description.codenJBAPE
dc.identifier.isiut000307838900004
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

28
checked on Apr 6, 2020

WEB OF SCIENCETM
Citations

27
checked on Mar 26, 2020

Page view(s)

80
checked on Mar 30, 2020

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.