Please use this identifier to cite or link to this item:
DC FieldValue
dc.titleOptimal designs of I-beams against lateral buckling
dc.contributor.authorWang, C.M.
dc.contributor.authorKitipornchai, S.
dc.contributor.authorThevendran, V.
dc.identifier.citationWang, C.M.,Kitipornchai, S.,Thevendran, V. (1990-09). Optimal designs of I-beams against lateral buckling. Journal of Engineering Mechanics 116 (9) : 1902-1923. ScholarBank@NUS Repository.
dc.description.abstractThis paper concerns the optimal distribution of a given volume of material in I-beams so as to maximize the elastic flexural-torsional buckling capacities. The material distribution has been restricted to different top-to-bottom flange-width ratios, linear tapering of flange width, or linear tapering of web depth. Based on the Rayleigh-Timoshenko energy method, a canonical form of the Rayleigh quotient is derived for the three types of design considered. For the maximum buckling capacity, the quotient is first minimized with respect to the displacement function and then maximized with respect to the design parameter. To avoid inelastic behavior and a small cross-sectional area in the optimal beam designs, a maximum permissible normal-stress constraint is imposed. Optimal designs of simply supported I-beams under general moment gradient are presented. A comparison study is made to determine which of the three design types is the most effective way of distributing material for maximum buckling capacities.
dc.contributor.departmentCIVIL ENGINEERING
dc.description.sourcetitleJournal of Engineering Mechanics
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Page view(s)

checked on Dec 1, 2019

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.