Please use this identifier to cite or link to this item:
Title: Analysis of repairable system failure data using time series models
Authors: Xie, M. 
Ho, S.L.
Issue Date: 1999
Citation: Xie, M.,Ho, S.L. (1999). Analysis of repairable system failure data using time series models. Journal of Quality in Maintenance Engineering 5 (1) : 50-61. ScholarBank@NUS Repository.
Abstract: Repairable system reliability analysis is very important to industry and, for complex systems, replacing a failed component is the most commonly used corrective maintenance action as it is an inexpensive way to restore the system to its functional state. However, failure data analysis for repairable systems is not an easy task and usually a number of assumptions which are difficult to validate have to be made. Despite the fact that time series models have the advantage of few such assumptions and they have been successfully applied in areas such as chemical processes, manufacturing and economics forecasting, its use in the field of reliability prediction has not been so widespread. In this paper, we examine the usefulness of this powerful technique in predicting system failures. Time series models are statistically and theoretically sound in their foundation and no postulation of models is required when analyzing failure data. Illustrative examples using actual data are presented. Comparison with the traditional Duane model, which is commonly used for repairable systems, is also discussed. The time series method gives satisfactory results in terms of its predictive performance and hence can be a viable alternative to the Duane model.
Source Title: Journal of Quality in Maintenance Engineering
ISSN: 13552511
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Page view(s)

checked on May 22, 2019

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.