Please use this identifier to cite or link to this item: https://scholarbank.nus.edu.sg/handle/10635/61813
DC FieldValue
dc.titleAn iterative learning-based modulation scheme for torque control in switched reluctance motors
dc.contributor.authorSahoo, N.C.
dc.contributor.authorXu, J.X.
dc.contributor.authorPanda, S.K.
dc.date.accessioned2014-06-17T06:44:16Z
dc.date.available2014-06-17T06:44:16Z
dc.date.issued2000
dc.identifier.citationSahoo, N.C.,Xu, J.X.,Panda, S.K. (2000). An iterative learning-based modulation scheme for torque control in switched reluctance motors. Electric Machines and Power Systems 28 (11) : 995-1018. ScholarBank@NUS Repository.
dc.identifier.issn0731356X
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/61813
dc.description.abstractThis paper deals with an iterative learning approach for modulating the desired torque profile so as to obtain ripple-free torque in switched reluctance motors. Because of the highly nonlinear relation between torque, current, and rotor position for this motor, it is not possible to obtain a closed-form mathematical expression for current as a function of torque and rotor position. Thus, the current waveforms are conventionally computed by using the linear torque model of the motor, and it is well known that such a scheme results in high torque ripple. In this paper, a novel method is proposed to minimize the ripple. In this new scheme, the current is still computed using the linear torque model, but the value of the torque used for this is not the desired (specified) torque, but rather a modulated-de sired torque that is obtained by repeated corrections to the desired torque from iteration to iteration The conventional rectangular pulse profile is taken as the initial current waveform. The method requires much less a priori knowledge of the magnetic characteristics of the motor. The algorithms have been formulated for both one-phase-on and two-phase-on schemes, for a four-phase switched reluctance motor, in the light of the principles behind iterative learning. Based on the observations from the simulation results of these schemes, a modified scheme has been proposed by incorporating a suitable commutation process, often called torque sharing functions, in order to generate reasonably smooth current waveforms for the ease of tracking by the stator circuit of the motor. The performances of all the proposed schemes have been verified by computer simulation. Copyright © 2000 Taylor & Francis.
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentELECTRICAL ENGINEERING
dc.description.sourcetitleElectric Machines and Power Systems
dc.description.volume28
dc.description.issue11
dc.description.page995-1018
dc.description.codenEMPSD
dc.identifier.isiutNOT_IN_WOS
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Page view(s)

27
checked on May 22, 2019

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.