Please use this identifier to cite or link to this item: https://doi.org/10.1243/09544054JEM901
DC FieldValue
dc.titleHigh-pressure phase transformation as the mechanism of ductile chip formation in nanoscale cutting of silicon wafer
dc.contributor.authorCai, M.B.
dc.contributor.authorLi, X.P.
dc.contributor.authorRahman, M.
dc.date.accessioned2014-06-17T06:23:21Z
dc.date.available2014-06-17T06:23:21Z
dc.date.issued2007
dc.identifier.citationCai, M.B., Li, X.P., Rahman, M. (2007). High-pressure phase transformation as the mechanism of ductile chip formation in nanoscale cutting of silicon wafer. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 221 (10) : 1511-1519. ScholarBank@NUS Repository. https://doi.org/10.1243/09544054JEM901
dc.identifier.issn09544054
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/60449
dc.description.abstractIn nanoscale cutting of silicon wafer, it has been found that under certain conditions ductile mode chip formation can be achieved. In order to understand the mechanism of the ductile chip formation, experiments and molecular dynamics (MD) simulations have been conducted in this study. The results of MD simulations of nanoscale cutting of silicon showed that because of the high hydrostatic pressure in the chip formation zone, there is a phase transformation of the monocrytslline silicon from diamond cubic structure to both βsilicon and amorphous phase in the chip formation zone, which results in plastic deformation of the workpiece material in the chip formation zone, as observed in experiments. The results further showed that although from experimental observation the plastic deformation in the ductile mode cutting of silicon is similar to that in cutting of ductile materials, such as aluminium, in ductile mode cutting of silicon it is the phase transformation of silicon rather than atomic dislocation that results in the plastic deformation. © IMechE 2007.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1243/09544054JEM901
dc.sourceScopus
dc.subjectHydrostatic pressure
dc.subjectMolecular dynamics simulation
dc.subjectNanoscale ductile cutting
dc.subjectPhase transformation
dc.subjectSilicon
dc.typeArticle
dc.contributor.departmentMECHANICAL ENGINEERING
dc.description.doi10.1243/09544054JEM901
dc.description.sourcetitleProceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture
dc.description.volume221
dc.description.issue10
dc.description.page1511-1519
dc.description.codenPIBME
dc.identifier.isiut000250849500004
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.