Please use this identifier to cite or link to this item: https://doi.org/10.1243/09544119JEIM762
DC FieldValue
dc.titleCharacterizing bubble dynamics created by high-intensity focused ultrasound for the delivery of antibacterial nanoparticles into a dental hard tissue
dc.contributor.authorOhl, S.-W.
dc.contributor.authorShrestha, A.
dc.contributor.authorKhoo, B.C.
dc.contributor.authorKishen, A.
dc.date.accessioned2014-06-17T06:14:37Z
dc.date.available2014-06-17T06:14:37Z
dc.date.issued2010-11-01
dc.identifier.citationOhl, S.-W., Shrestha, A., Khoo, B.C., Kishen, A. (2010-11-01). Characterizing bubble dynamics created by high-intensity focused ultrasound for the delivery of antibacterial nanoparticles into a dental hard tissue. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 224 (11) : 1285-1296. ScholarBank@NUS Repository. https://doi.org/10.1243/09544119JEIM762
dc.identifier.issn09544119
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/59705
dc.description.abstractHig hintensity focused ultrasound (HIFU) has been applied for drug delivery in various disease conditions. Delivery of antibacterial-nanoparticles into dental hard tissues may open up new avenues in the treatment of dental infections. However, the basic mechanism of bubble dynamics, its characterization, and working parameters for effective delivery of nanoparticles, warrants further understanding. This study was conducted to highlight the basic concept of HIFU and the associated bubble dynamics for the delivery of nanoparticles. Characterization experiments to deliver micro-scale particles into simulated tubular channels, activity of ultrasonic bubbles, and pressure measurement inside the HIFU system were conducted. Subsequently, experiments were carried out to test the ability of HIFU to deliver nanoparticles into human dentine using field emission scanning electron micrographs (FESEM) and elemental dispersive X-ray analysis (EDX). The characterization experiments showed that the bubbles collapsing at the opening of tubular channels were able to propel particles along their whole length. The pressure measured showed sufficient negative and positive pressure suggesting that the bubble grew to a certain size before collapsing, thus enabling the particles to be pushed. The FESEM and EDX analysis highlighted the ability of HIFU to deliver nanoparticles deep within the dentinal tubules. This study highlighted the characteristics and the mechanism involved of the bubbles generated by the HIFU and their capability to deliver nanoparticles. © 2010 Authors.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1243/09544119JEIM762
dc.sourceScopus
dc.subjectbubble dynamics
dc.subjectdentinal tubules
dc.subjecthigh intensity focused ultrasound
dc.subjectnanoparticles
dc.subjectpressure
dc.typeArticle
dc.contributor.departmentMECHANICAL ENGINEERING
dc.description.doi10.1243/09544119JEIM762
dc.description.sourcetitleProceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine
dc.description.volume224
dc.description.issue11
dc.description.page1285-1296
dc.description.codenPIHME
dc.identifier.isiut000284090200006
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

9
checked on Aug 7, 2020

WEB OF SCIENCETM
Citations

9
checked on Jul 31, 2020

Page view(s)

68
checked on Aug 3, 2020

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.