Please use this identifier to cite or link to this item:
Title: An analytical study on the thermal effects of cryosurgery on selective cell destruction
Authors: Chua, K.J. 
Chou, S.K. 
Ho, J.C. 
Keywords: Cooling rate
Freezing front
Issue Date: 2007
Citation: Chua, K.J., Chou, S.K., Ho, J.C. (2007). An analytical study on the thermal effects of cryosurgery on selective cell destruction. Journal of Biomechanics 40 (1) : 100-116. ScholarBank@NUS Repository.
Abstract: The aim of cryosurgery is to kill cells within a closely defined region maintained at a predetermined low temperature. To effectively kill cells, it is important to be able to predict and control the cooling rate over some critical range of temperatures and freezing states in order to regulate the spatial extent of injury during any freeze-thaw protocol. The objective of manipulating the freezing parameters is to maximize the destruction of cancer cells within a defined spatial domain while minimizing cryoinjury to the surrounding healthy tissue. An analytical model has been developed to study the rate of cell destruction within a liver tumor undergoing a freeze-thaw cryosurgical process. Temperature transients in the tumor undergoing cryosurgery have been quantitatively investigated. The simulation is based on solving the transient bioheat equation using the finite volume scheme for a single or multiple-probe geometry. Simulated results show good agreement with experimental data obtained from in vivo clinical study. The calibrated model has been employed to study the effects of different freezing rates, freeze-thaw cycle(s), and multi-probe freezing on cell damage in a liver tumor. The effectiveness of each treatment protocol is estimated by generating the cell survival-volume signature and comparing the percentage of cell damaged within the ice-ball. Results from the model show that employing freeze-thaw cycles has the potential to enhance cell destruction within the cancerous tissue. Results from this study provide the basis for designing an optimized cryosurgical protocol which incorporates thermal effects and the extent of cell destruction within tumors. © 2005 Elsevier Ltd. All rights reserved.
Source Title: Journal of Biomechanics
ISSN: 00219290
DOI: 10.1016/j.jbiomech.2005.11.005
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.