Please use this identifier to cite or link to this item: https://doi.org/10.1115/1.1581887
DC FieldValue
dc.titleA volumetric difference-based adaptive slicing and deposition method for layered manufacturing
dc.contributor.authorYang, Y.
dc.contributor.authorFuh, J.Y.H.
dc.contributor.authorLoh, H.T.
dc.contributor.authorWong, Y.S.
dc.date.accessioned2014-06-17T06:10:16Z
dc.date.available2014-06-17T06:10:16Z
dc.date.issued2003-08
dc.identifier.citationYang, Y., Fuh, J.Y.H., Loh, H.T., Wong, Y.S. (2003-08). A volumetric difference-based adaptive slicing and deposition method for layered manufacturing. Journal of Manufacturing Science and Engineering, Transactions of the ASME 125 (3) : 586-594. ScholarBank@NUS Repository. https://doi.org/10.1115/1.1581887
dc.identifier.issn10871357
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/59338
dc.description.abstractAdaptive slicing capable of producing variable thickness is a useful means to improve the fabrication efficiency in layered manufacturing (LM) or Rapid Prototyping (RP) processes. Many approaches have been reported in this field; however, most of them are based on the cusp height criteria, which is not an effective representation of the staircase effect when the surface normal is near vertical Furthermore, most of the existing methods slice the model without considering the local features in the plane of the sliced layer. This paper introduces a novel difference-based adaptive slicing and deposition method. The advantage of this slicing method is that the slicing error is independent of the surface normal. A new criterion for adaptive slicing is evaluated and compared with that based on cusp-height. An adaptive slicing algorithm, which uses the volumetric difference between two adjacent layers as the criterion for slicing, has been developed in this work. Different deposition strategies for the common area and the difference area are applied to layer fabrication while considering the local features of the sliced layer. The algorithm has been tested with a sample part, and the results indicate that a better surface finish can be achieved for both surfaces whose normals are nearly in the slicing plane and surfaces whose normals are nearly perpendicular to the slicing plane. It is found that the building time can be reduced by 40% compared with the traditional adaptive slicing. The proposed method has minimized the volumetric error between the built LM part and the original CAD model while achieving a higher efficiency. It is suitable for most commercialized LM systems due to its simplicity in implementation.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1115/1.1581887
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentMECHANICAL ENGINEERING
dc.description.doi10.1115/1.1581887
dc.description.sourcetitleJournal of Manufacturing Science and Engineering, Transactions of the ASME
dc.description.volume125
dc.description.issue3
dc.description.page586-594
dc.identifier.isiut000184637800022
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.