Please use this identifier to cite or link to this item: https://doi.org/10.1016/S0005-1098(01)00129-7
DC FieldValue
dc.titleNonregular feedback linearization for a class of second-order nonlinear systems
dc.contributor.authorGe, S.S.
dc.contributor.authorSun, Z.
dc.contributor.authorLee, T.H.
dc.date.accessioned2014-06-17T02:59:04Z
dc.date.available2014-06-17T02:59:04Z
dc.date.issued2001-11
dc.identifier.citationGe, S.S., Sun, Z., Lee, T.H. (2001-11). Nonregular feedback linearization for a class of second-order nonlinear systems. Automatica 37 (11) : 1819-1824. ScholarBank@NUS Repository. https://doi.org/10.1016/S0005-1098(01)00129-7
dc.identifier.issn00051098
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/56824
dc.description.abstractIn this paper, a class of second-order nonlinear cascade control systems is considered. Under certain structural assumptions, it is proven that these systems are exactly linearizable via nonregular static state feedbacks and state diffeomorphisms. Linearizing input transformations and the corresponding state diffeomorphisms are presented. Finally, nonregular static feedback linearization is applied to a class of flexible joint robots, and the controller constructed is globally asymptotically stabilizing. © 2001 Elsevier Science Ltd. All rights reserved.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1016/S0005-1098(01)00129-7
dc.sourceScopus
dc.subjectFeedback linearization
dc.subjectGlobal stability
dc.subjectNonlinear systems
dc.subjectNonregular state feedback
dc.subjectRobot control
dc.typeArticle
dc.contributor.departmentELECTRICAL & COMPUTER ENGINEERING
dc.description.doi10.1016/S0005-1098(01)00129-7
dc.description.sourcetitleAutomatica
dc.description.volume37
dc.description.issue11
dc.description.page1819-1824
dc.description.codenATCAA
dc.identifier.isiut000171249800013
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.