Please use this identifier to cite or link to this item:
Title: Nonequilibrium spin transport through a diluted magnetic semiconductor quantum dot system with noncollinear magnetization
Authors: Ma, M. 
Jalil, M.B.A. 
Tan, S.G.
Keywords: Quantum dot
Spin-dependent transport
Tunnel magnetoresistance
Issue Date: Mar-2013
Citation: Ma, M., Jalil, M.B.A., Tan, S.G. (2013-03). Nonequilibrium spin transport through a diluted magnetic semiconductor quantum dot system with noncollinear magnetization. Annals of Physics 330 : 95-103. ScholarBank@NUS Repository.
Abstract: The spin-dependent transport through a diluted magnetic semiconductor quantum dot (QD) which is coupled via magnetic tunnel junctions to two ferromagnetic leads is studied theoretically. A noncollinear system is considered, where the QD is magnetized at an arbitrary angle with respect to the leads' magnetization. The tunneling current is calculated in the coherent regime via the Keldysh nonequilibrium Green's function (NEGF) formalism, incorporating the electron-electron interaction in the QD. We provide the first analytical solution for the Green's function of the noncollinear DMS quantum dot system, solved via the equation of motion method under Hartree-Fock approximation. The transport characteristics (charge and spin currents, and tunnel magnetoresistance (TMR)) are evaluated for different voltage regimes. The interplay between spin-dependent tunneling and single-charge effects results in three distinct voltage regimes in the spin and charge current characteristics. The voltage range in which the QD is singly occupied corresponds to the maximum spin current and greatest sensitivity of the spin current to the QD magnetization orientation. The QD device also shows transport features suitable for sensor applications, i.e., a large charge current coupled with a high TMR ratio. © 2012 Elsevier Inc.
Source Title: Annals of Physics
ISSN: 00034916
DOI: 10.1016/j.aop.2012.11.016
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Page view(s)

checked on Sep 8, 2019

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.