Please use this identifier to cite or link to this item:
Title: Investigation on the optimized design of alternate-hole-defect for 2D phononic crystal based silicon microresonators
Authors: Wang, N.
Hsiao, F.-L. 
Tsai, J.M.
Palaniapan, M. 
Kwong, D.-L.
Lee, C. 
Issue Date: 15-Jul-2012
Citation: Wang, N., Hsiao, F.-L., Tsai, J.M., Palaniapan, M., Kwong, D.-L., Lee, C. (2012-07-15). Investigation on the optimized design of alternate-hole-defect for 2D phononic crystal based silicon microresonators. Journal of Applied Physics 112 (2) : -. ScholarBank@NUS Repository.
Abstract: This paper shows the design, fabrication, and characterization of the Bloch-mode micromechanical resonators made by creating alternate defects to form a resonant cavity on a two-dimensional silicon phononic crystal slab of square lattice. The length of the resonant cavity (L) and the central-hole radius (r′) are varied to optimize the performance of the resonators. CMOS-compatible aluminium nitride is used as the piezoelectric material of the interdigital transducer to launch and detect acoustic waves. The extent of energy confinement within the cavity, as shown by the simulated displacement profiles of the resonators, agrees with the measured Q factors. We also quantitatively analysed the band structure of the proposed resonators and found that the Q factors are generally in an inverse relationship with the standard deviation of the band, due to the slow sound effect brought by flat bands which reduces the energy loss along the lateral direction (Y direction) and enhances the Q factor. © 2012 American Institute of Physics.
Source Title: Journal of Applied Physics
ISSN: 00218979
DOI: 10.1063/1.4740085
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Mar 16, 2023


checked on Mar 16, 2023

Page view(s)

checked on Mar 16, 2023

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.