Please use this identifier to cite or link to this item: https://doi.org/10.1109/TMAG.2012.2201926
Title: Effect of interfacial roughness on slider-disk interactions at near-contact regime
Authors: Ng, K.K.
Seet, H.L.
Hua, W.
Yu, S.
Ng, V. 
Liu, B.
Keywords: Head-disk interface
Head-disk spacing
Interfacial roughness
Magnetic disk drives
Tribology
Issue Date: 2012
Citation: Ng, K.K., Seet, H.L., Hua, W., Yu, S., Ng, V., Liu, B. (2012). Effect of interfacial roughness on slider-disk interactions at near-contact regime. IEEE Transactions on Magnetics 48 (11) : 4459-4462. ScholarBank@NUS Repository. https://doi.org/10.1109/TMAG.2012.2201926
Abstract: One of the major efforts in reducing fly height (FH) in order to achieve higher recording areal density for hard disk drive, is to reduce slider-disk interfacial roughness. However, as roughness improves to the atomically smooth level, various interaction forces such as van der Waals force, electrostatic force, and intermittent contact force affect slider fly stability. In this paper, an electrostatic force manipulation methodology was employed to investigate roughness effect on slider-disk interactions at near-contact regime. In such methodology, an AC excitation with pre-determined frequency was applied across the slider-disk interface. First harmonic vibration response of the excitation was monitored. Such vibration response is sensitive to various interaction forces, as FH is reduced to near-contact regime. The phenomena observed were verified with static and dynamic simulations, using self-developed ABsolution simulation software. It was found that disk with higher roughness has larger adhesive force gradient and hence larger first harmonic vibration at near-contact. First harmonic vibration dip was observed near touchdown point. Simulation result suggests that the phenomenon is due to time-averaging effect of slider intermittently snap to the disk surface. It was found that magnitude of the vibration dip is surface roughness dependent. At contact regime, nonlinear contact stiffness-based contact detection is highly sensitive for smooth surface. Abrupt transition of low to high vibration state of smooth surface during contact is attributed to larger adhesion hysteresis effect. © 2012 IEEE.
Source Title: IEEE Transactions on Magnetics
URI: http://scholarbank.nus.edu.sg/handle/10635/55750
ISSN: 00189464
DOI: 10.1109/TMAG.2012.2201926
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.