Please use this identifier to cite or link to this item:
Title: Charge fractionalization in biased bilayer graphene
Authors: Martinez, J.C. 
Jalil, M.B.A. 
Tan, S.G. 
Issue Date: 22-Aug-2012
Citation: Martinez, J.C., Jalil, M.B.A., Tan, S.G. (2012-08-22). Charge fractionalization in biased bilayer graphene. Journal of Physics Condensed Matter 24 (33) : -. ScholarBank@NUS Repository.
Abstract: Fractional charge may arise when fermionic zero modes exist in a topological background field. In biased bilayer graphene (BBLG), the bias plays the role of the nontrivial background field. When semi-infinite BBLG with a zigzag edge is used, the dynamics induces an odd number of zero-energy modes, which, together with the conjugation symmetry between positive-and negative-energy states, are the requisite conditions for fractionalization. Exploiting the trigonal interaction to isolate a given zero-energy mode on the zigzag edge, we consider extended and localized modes (the latter being obtained from a localized wavepacket generated by prior irradiation of the sample with an electromagnetic vortex). The valley degeneracy is lifted by a layer asymmetry, while an edge-induced spin polarization breaks the spin degeneracy. We describe scenarios for the detection of charge- edge states. © 2012 IOP Publishing Ltd.
Source Title: Journal of Physics Condensed Matter
ISSN: 09538984
DOI: 10.1088/0953-8984/24/33/335302
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.