Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.patrec.2009.04.007
DC FieldValue
dc.titleA novel approach to classification of facial expressions from 3D-mesh datasets using modified PCA
dc.contributor.authorVenkatesh, Y.V.
dc.contributor.authorKassim, A.A.
dc.contributor.authorRamana Murthy, O.V.
dc.date.accessioned2014-06-16T09:32:39Z
dc.date.available2014-06-16T09:32:39Z
dc.date.issued2009-09-01
dc.identifier.citationVenkatesh, Y.V., Kassim, A.A., Ramana Murthy, O.V. (2009-09-01). A novel approach to classification of facial expressions from 3D-mesh datasets using modified PCA. Pattern Recognition Letters 30 (12) : 1128-1137. ScholarBank@NUS Repository. https://doi.org/10.1016/j.patrec.2009.04.007
dc.identifier.issn01678655
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/54583
dc.description.abstractWe propose a novel approach to human facial expression recognition using only the shape information at a finite set of fiducial points, extracted from the 3D neutral and expressive faces. In the course of applying the technique to the facial database, BU-3DFE, which contains facial shape and 2D color ("texture") information, we extract from the images of neutral and expressive faces, salient contours in the facial interest-regions around the eyebrows, eyes, nose and mouth by invoking an active contour algorithm. The contours are then uniformly sampled and mapped onto the 3D-mesh dataset in order to generate a shape (and color) description of the interest-regions. By a matrix-algebraic operation on the shape of the neutral and expressive faces, a shape feature-matrix is computed for each expression and for each person, which is then subjected to the proposed modified PCA approach to recognize expressions. Classification results are presented to demonstrate the effectiveness of the proposed approach. It is also found that accuracy estimates compare favorably with those in the literature on facial expression recognition from 3D-mesh datasets. © 2009 Elsevier B.V. All rights reserved.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1016/j.patrec.2009.04.007
dc.sourceScopus
dc.subject3D face models
dc.subjectExpression recognition
dc.subjectFacial feature extraction
dc.subjectPCA
dc.typeArticle
dc.contributor.departmentELECTRICAL & COMPUTER ENGINEERING
dc.description.doi10.1016/j.patrec.2009.04.007
dc.description.sourcetitlePattern Recognition Letters
dc.description.volume30
dc.description.issue12
dc.description.page1128-1137
dc.identifier.isiut000268866700010
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

33
checked on Dec 2, 2020

WEB OF SCIENCETM
Citations

27
checked on Nov 24, 2020

Page view(s)

139
checked on Dec 1, 2020

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.