Please use this identifier to cite or link to this item: https://doi.org/10.1007/s00466-004-0624-7
DC FieldValue
dc.titleA nonstandard finite difference scheme for a strain-gradient theory
dc.contributor.authorVedantam, S.
dc.date.accessioned2014-06-16T09:32:31Z
dc.date.available2014-06-16T09:32:31Z
dc.date.issued2005-04
dc.identifier.citationVedantam, S. (2005-04). A nonstandard finite difference scheme for a strain-gradient theory. Computational Mechanics 35 (5) : 369-375. ScholarBank@NUS Repository. https://doi.org/10.1007/s00466-004-0624-7
dc.identifier.issn01787675
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/54569
dc.description.abstractStrain-gradient theories have proved very useful in describing computational aspects of phase transforming materials such as shape memory alloys. A significant feature implicit to these theories is a relation between the driving force acting on a phase boundary and its velocity. Numerical calculation of the kinetic relation using standard finite difference methods shows significant quantitative and qualitative departures from the analytical kinetic relation. In this paper we derive a nonstandard finite difference scheme and show that the kinetic relation evaluated using this scheme displays the correct qualitative behaviour and matches the analytical solution significantly better quantitatively. In particular the nonstandard finite difference scheme eliminates spurious lattice trapping in the kinetic relation. © Springer-Verlag 2004.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1007/s00466-004-0624-7
dc.sourceScopus
dc.subjectKinetic relation
dc.subjectLattice trapping
dc.subjectNonstandard finite difference methods
dc.subjectStrain gradient theory
dc.typeArticle
dc.contributor.departmentMECHANICAL ENGINEERING
dc.description.doi10.1007/s00466-004-0624-7
dc.description.sourcetitleComputational Mechanics
dc.description.volume35
dc.description.issue5
dc.description.page369-375
dc.description.codenCMMEE
dc.identifier.isiut000227696300006
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

4
checked on Mar 17, 2023

WEB OF SCIENCETM
Citations

4
checked on Mar 17, 2023

Page view(s)

182
checked on Mar 16, 2023

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.