Please use this identifier to cite or link to this item:
Title: A conjugate gradient projection algorithm for the traffic assignment problem
Authors: Lee, D.-H. 
Nie, Y.
Chen, A.
Keywords: Conjugate gradient projection
Gradient projection
Path-based algorithm
Traffic assigment
Issue Date: 23-May-2003
Citation: Lee, D.-H.,Nie, Y.,Chen, A. (2003-05-23). A conjugate gradient projection algorithm for the traffic assignment problem. Mathematical and Computer Modelling 37 (7-8) : 863-878. ScholarBank@NUS Repository.
Abstract: In recent years, researchers have shown interests in adopting path-based algorithms to the traffic assignment problem (TAP). The gradient projection (GP) algorithm demonstrates promising computational efficiency and convergence performance over state-of-the-practice link-based algorithms such as the widely accepted and used Frank-Wolfe (FW) algorithm. Note that GP still retains a linear convergence rate. GP thus could be slow as it is approaching the optimal solution. As a remedy, the Newton type approach becomes an intuitive candidate to improve GP's performance. In this paper, we introduce an additional projection along the conjugate gradient direction besides the ordinary gradient projection in every iteration, by which the Hessian matrix is approximated more accurately. According to our computational results, the conjugate gradient projection (CGP) improves the convergence performance greatly. The results indicate that CGP can deliver better and more reliable convergence than GP and remains its computational tractability even when large-scale networks are being considered. © 2003 Elsevier Science Ltd. All rights reserved.
Source Title: Mathematical and Computer Modelling
ISSN: 08957177
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Page view(s)

checked on Oct 28, 2019

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.