Please use this identifier to cite or link to this item: https://doi.org/10.1142/S0219876210002295
DC FieldValue
dc.titleA conforming point interpolation method (CPIM) by shape function reconstruction for elasticity problems
dc.contributor.authorXu, X.
dc.contributor.authorLiu, G.R.
dc.contributor.authorGu, Y.T.
dc.contributor.authorZhang, G.Y.
dc.date.accessioned2014-06-16T09:25:35Z
dc.date.available2014-06-16T09:25:35Z
dc.date.issued2010-09
dc.identifier.citationXu, X., Liu, G.R., Gu, Y.T., Zhang, G.Y. (2010-09). A conforming point interpolation method (CPIM) by shape function reconstruction for elasticity problems. International Journal of Computational Methods 7 (3) : 369-395. ScholarBank@NUS Repository. https://doi.org/10.1142/S0219876210002295
dc.identifier.issn02198762
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/54020
dc.description.abstractA conforming point interpolation method (CPIM) is proposed based on the Galerkin formulation for 2D mechanics problems using triangular background cells. A technique for reconstructing the PIM shape functions is proposed to create a continuous displacement field over the whole problem domain, which guarantees the CPIM passing the standard patch test. We prove theoretically the existence and uniqueness of the CPIM solution, and conduct detailed analyses on the convergence rate; computational efficiency and band width of the stiffness matrix of CPIM. The CPIM does not introduce any additional degrees of freedoms compared to the linear FEM and original PIM; while convergence rate of quadratic CPIM is in between that of linear FEM and quadratic FEM which results in the high computational efficiency. Intensive numerical studies verify the properties of the CPIM. © 2010 World Scientific Publishing Company.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1142/S0219876210002295
dc.sourceScopus
dc.subjectcomputational efficiency
dc.subjectcomputational method
dc.subjectconvergence rates
dc.subjectfinite element method
dc.subjectmeshfree methods
dc.subjectnon-conforming
dc.subjectNumerical method
dc.subjectpoint interpolation method
dc.typeArticle
dc.contributor.departmentMECHANICAL ENGINEERING
dc.description.doi10.1142/S0219876210002295
dc.description.sourcetitleInternational Journal of Computational Methods
dc.description.volume7
dc.description.issue3
dc.description.page369-395
dc.identifier.isiut000283738300001
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

9
checked on Jan 23, 2020

WEB OF SCIENCETM
Citations

8
checked on Jan 23, 2020

Page view(s)

107
checked on Dec 30, 2019

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.