Please use this identifier to cite or link to this item:
Title: A conforming point interpolation method (CPIM) by shape function reconstruction for elasticity problems
Authors: Xu, X.
Liu, G.R. 
Gu, Y.T.
Zhang, G.Y.
Keywords: computational efficiency
computational method
convergence rates
finite element method
meshfree methods
Numerical method
point interpolation method
Issue Date: Sep-2010
Citation: Xu, X., Liu, G.R., Gu, Y.T., Zhang, G.Y. (2010-09). A conforming point interpolation method (CPIM) by shape function reconstruction for elasticity problems. International Journal of Computational Methods 7 (3) : 369-395. ScholarBank@NUS Repository.
Abstract: A conforming point interpolation method (CPIM) is proposed based on the Galerkin formulation for 2D mechanics problems using triangular background cells. A technique for reconstructing the PIM shape functions is proposed to create a continuous displacement field over the whole problem domain, which guarantees the CPIM passing the standard patch test. We prove theoretically the existence and uniqueness of the CPIM solution, and conduct detailed analyses on the convergence rate; computational efficiency and band width of the stiffness matrix of CPIM. The CPIM does not introduce any additional degrees of freedoms compared to the linear FEM and original PIM; while convergence rate of quadratic CPIM is in between that of linear FEM and quadratic FEM which results in the high computational efficiency. Intensive numerical studies verify the properties of the CPIM. © 2010 World Scientific Publishing Company.
Source Title: International Journal of Computational Methods
ISSN: 02198762
DOI: 10.1142/S0219876210002295
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Jan 23, 2020


checked on Jan 23, 2020

Page view(s)

checked on Dec 30, 2019

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.