Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.actamat.2009.08.073
DC FieldValue
dc.titleDislocation cross-slip in heteroepitaxial multilayer films
dc.contributor.authorQuek, S.S.
dc.contributor.authorZhang, Y.W.
dc.contributor.authorXiang, Y.
dc.contributor.authorSrolovitz, D.J.
dc.date.accessioned2014-05-16T07:02:43Z
dc.date.available2014-05-16T07:02:43Z
dc.date.issued2010-01
dc.identifier.citationQuek, S.S., Zhang, Y.W., Xiang, Y., Srolovitz, D.J. (2010-01). Dislocation cross-slip in heteroepitaxial multilayer films. Acta Materialia 58 (1) : 226-234. ScholarBank@NUS Repository. https://doi.org/10.1016/j.actamat.2009.08.073
dc.identifier.issn13596454
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/52610
dc.description.abstractWe simulated dislocation dynamics in heteroepitaxial multilayer thin film systems, considering the case where threading dislocations emerging from the substrate replicate themselves into the thin film during the film growth process. In the regime where the thin film layer thickness is tens of nanometers, the strain hardening mechanism involves the glide of single threading dislocation segments in the thin film instead of by dislocation pile-ups. We studied the dislocations' evolution behavior and their interactions since these then became significant to the strain hardening of the multilayer structure. Cross-slip of threading dislocation segments in multilayer structure was found to be more prevalent compared to a single-layered thin film. This can result in a more complex pattern of interfacial dislocations and may have a significant contribution to the interactions between threading and interfacial dislocations. The simulation was carried out using the level set method incorporating thin film growth. © 2009 Acta Materialia Inc.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1016/j.actamat.2009.08.073
dc.sourceScopus
dc.subjectCross-slip
dc.subjectDislocation dynamics
dc.subjectHeteroepitaxy
dc.subjectMultilayers
dc.subjectThin film
dc.typeArticle
dc.contributor.departmentMATERIALS SCIENCE AND ENGINEERING
dc.description.doi10.1016/j.actamat.2009.08.073
dc.description.sourcetitleActa Materialia
dc.description.volume58
dc.description.issue1
dc.description.page226-234
dc.identifier.isiut000272405600024
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.