Please use this identifier to cite or link to this item:
Title: Substrate topography and size determine the fate of human embryonic stem cells to neuronal or glial lineage
Authors: Ankam, S.
Suryana, M. 
Chan, L.Y.
Moe, A.A.K. 
Teo, B.K.K.
Law, J.B.K.
Sheetz, M.P. 
Low, H.Y.
Yim, E.K.F. 
Keywords: High-throughput screening
Multiarchitectural array chip
Neuronal differentiation
Pluripotent stem cells
Issue Date: Jan-2013
Citation: Ankam, S., Suryana, M., Chan, L.Y., Moe, A.A.K., Teo, B.K.K., Law, J.B.K., Sheetz, M.P., Low, H.Y., Yim, E.K.F. (2013-01). Substrate topography and size determine the fate of human embryonic stem cells to neuronal or glial lineage. Acta Biomaterialia 9 (1) : 4535-4545. ScholarBank@NUS Repository.
Abstract: Efficient derivation of neural cells from human embryonic stem cells (hESCs) remains an unmet need for the treatment of neurological disorders. The limiting factors for current methods include being labor-intensive, time-consuming and expensive. In this study, we hypothesize that the substrate topography, with optimal geometry and dimension, can modulate the neural fate of hESCs and enhance the efficiency of differentiation. A multi-architectural chip (MARC) containing fields of topographies varying in geometry and dimension was developed to facilitate high-throughput analysis of topography-induced neural differentiation in vitro. The hESCs were subjected to "direct differentiation", in which small clumps of undifferentiated hESCs were cultured directly without going through the stage of embryoid body formation, on the MARC with N2 and B27 supplements for 7 days. The gene and protein expression analysis indicated that the anisotropic patterns like gratings promoted neuronal differentiation of hESCs while the isotropic patterns like pillars and wells promoted the glial differentiation of hESCs. This study showed that optimal combination of topography and biochemical cues could shorten the differentiation period and allowed derivation of neurons bearing longer neurites that were aligned along the grating axis. The MARC platform would enable high-throughput screening of topographical substrates that could maximize the efficiency of neuronal differentiation from pluripotent stem cells. © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Source Title: Acta Biomaterialia
ISSN: 17427061
DOI: 10.1016/j.actbio.2012.08.018
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Jun 17, 2021


checked on Jun 17, 2021

Page view(s)

checked on Jun 11, 2021

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.