Please use this identifier to cite or link to this item:
Title: Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds
Authors: Zhang, Y. 
Ouyang, H. 
Chwee, T.L. 
Ramakrishna, S. 
Huang, Z.-M.
Keywords: Bone-marrow stromal cells
Composite nanofibrous scaffolds
Tissue engineering
Issue Date: 15-Jan-2005
Citation: Zhang, Y., Ouyang, H., Chwee, T.L., Ramakrishna, S., Huang, Z.-M. (2005-01-15). Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. Journal of Biomedical Materials Research - Part B Applied Biomaterials 72 (1) : 156-165. ScholarBank@NUS Repository.
Abstract: In this article, ultrafine gelatin (Gt) fibers were successfully produced with the use of the electrical spinning or electrospinning technique. A fluorinated alcohol of 2,2,2-trifluoroethanol (TFE) was used as the dissolving solvent. The morphology of the electrospun gelatin fibers was found to be dependent on the alteration of gelatin concentration ranging from 2.5% w/v to 12.5% w/v at 2.5% increment intervals. Based on the electrospun gelatin fibers obtained, 10% w/v gelatin/TFE solution was selected and mixed with 10% w/v poly(ε-caprolactone) (PCL) in TFE at a ratio of 50:50 and co-electrospun to produce gelatin/PCL composite membranes. Contact-angle measurement and tensile tests indicated that the gelatin/ PCL complex fibrous membrane exhibited improved mechanical properties as well as more favorable wettability than that obtained from either gelatin or PCL alone. The gelatin/PCL fibrous membranes were further investigated as a promising scaffold for bone-marrow stromal cell (BMSC) culture. Scanning electron microscopy (SEM) and laser confocal microscopy observations showed that the cells could not only favorably attach and grow well on the surface of these scaffolds, but were also able to migrate inside the scaffold up to 114 μm within 1 week of culture. These results suggest the potential of using composite gelatin/PCL fibrous scaffolds for engineering three-dimensional tissues. © 2004 Wiley Periodicals, Inc.
Source Title: Journal of Biomedical Materials Research - Part B Applied Biomaterials
ISSN: 00219304
DOI: 10.1002/jbm.b.30128
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Sep 27, 2021


checked on Sep 27, 2021

Page view(s)

checked on Sep 24, 2021

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.