Please use this identifier to cite or link to this item:
Title: Dissipative particle dynamics simulations of electroosmotic flow in nano-fluidic devices
Authors: Duong-Hong, D.
Wang, J.-S. 
Liu, G.R. 
Chen, Y.Z. 
Han, J.
Hadjiconstantinou, N.G.
Keywords: Computer simulation
Dissipative Particle Dynamics (DPD) method
Electroosmotic flows
Issue Date: Mar-2008
Citation: Duong-Hong, D., Wang, J.-S., Liu, G.R., Chen, Y.Z., Han, J., Hadjiconstantinou, N.G. (2008-03). Dissipative particle dynamics simulations of electroosmotic flow in nano-fluidic devices. Microfluidics and Nanofluidics 4 (3) : 219-225. ScholarBank@NUS Repository.
Abstract: When modeling the hydrodynamics of nanofluidic systems, it is often essential to include molecular-level information such as molecular fluctuations. To this effect, we present a mesoscopic approach which combines a fluctuating hydrodynamics formulation with an efficient implementation of Electroosmotic flow (EOF) in the small Debye length limit. The resulting approach, whose major ingredient is Dissipative Particle Dynamics, is sufficiently coarse-grained to allow efficient simulation of the hydrodynamics of micro/nanofluidic devices of sizes that are too large to be simulated by ab initio methods such as Molecular Dynamics. Within our formulation, EOF is efficiently generated using the recently proven similitude between velocity and electric field under appropriate conditions. More specifically, EOF is generated using an effective boundary condition, akin to a moving wall, thus avoiding evaluation of the computationally expensive electrostatic forces. Our method is used for simulating EOFs and DNA molecular sieving in simple and complex two-dimensional (2D) and 3D geometries frequently used in nano-fluidic devices. The numerical data obtained from our model are in very good agreement with theoretical results. © Springer-Verlag 2007.
Source Title: Microfluidics and Nanofluidics
ISSN: 16134982
DOI: 10.1007/s10404-007-0170-7
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Jul 3, 2020


checked on Jul 3, 2020

Page view(s)

checked on Jun 29, 2020

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.