Please use this identifier to cite or link to this item: https://doi.org/10.1103/PhysRevE.80.041911
DC FieldValue
dc.titleAnalytical description of Ogston-regime biomolecule separation using nanofilters and nanopores
dc.contributor.authorLi, Z.R.
dc.contributor.authorLiu, G.R.
dc.contributor.authorHan, J.
dc.contributor.authorCheng, Y.
dc.contributor.authorChen, Y.Z.
dc.contributor.authorWang, J.-S.
dc.contributor.authorHadjiconstantinou, N.G.
dc.date.accessioned2014-04-24T09:31:03Z
dc.date.available2014-04-24T09:31:03Z
dc.date.issued2009-10-08
dc.identifier.citationLi, Z.R., Liu, G.R., Han, J., Cheng, Y., Chen, Y.Z., Wang, J.-S., Hadjiconstantinou, N.G. (2009-10-08). Analytical description of Ogston-regime biomolecule separation using nanofilters and nanopores. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 80 (4) : -. ScholarBank@NUS Repository. https://doi.org/10.1103/PhysRevE.80.041911
dc.identifier.issn15393755
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/51332
dc.description.abstractWe present a theoretical model describing Ogston (pore size comparable to or larger than the characteristic molecular dimension) sieving of rigid isotropic and anisotropic biomolecules in nanofluidic molecular filter arrays comprising of alternating deep and shallow regions. Starting from a quasi-one-dimensional drift-diffusion description, which captures the interplay between the driving electric force, entropic barrier and molecular diffusion, we derive explicit analytical results for the effective mobility and trapping time. Our results elucidate the effects of field strength, device geometry and entropic barrier height, providing a robust tool for the design and optimization of nanofilter/nanopore systems. Specifically, we show that Ogston sieving becomes negligible when the length of shallow region becomes sufficiently small, mainly due to efficient diffusional transport through the short shallow region. Our theoretical results are in line with experimental observations and provide important design insight for nanofluidic systems. © 2009 The American Physical Society.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1103/PhysRevE.80.041911
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentMECHANICAL ENGINEERING
dc.contributor.departmentPHARMACY
dc.contributor.departmentPHYSICS
dc.description.doi10.1103/PhysRevE.80.041911
dc.description.sourcetitlePhysical Review E - Statistical, Nonlinear, and Soft Matter Physics
dc.description.volume80
dc.description.issue4
dc.description.page-
dc.description.codenPLEEE
dc.identifier.isiut000271350400090
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

6
checked on Nov 29, 2021

WEB OF SCIENCETM
Citations

6
checked on Nov 29, 2021

Page view(s)

157
checked on Dec 2, 2021

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.