Please use this identifier to cite or link to this item:
Title: Scheduling multisource divisible loads on arbitrary networks
Authors: Jia, J.
Veeravalli, B. 
Weissman, J.
Keywords: Arbitrary network
Communication delay
Divisible loads
Processing time
Issue Date: Apr-2010
Citation: Jia, J., Veeravalli, B., Weissman, J. (2010-04). Scheduling multisource divisible loads on arbitrary networks. IEEE Transactions on Parallel and Distributed Systems 21 (4) : 520-531. ScholarBank@NUS Repository.
Abstract: Scheduling multisource divisible loads is a challenging task as different sources should cooperate and share their computing power with others to balance their loads and minimize total computational time. In this study, we attempt to address a generalized divisible load scheduling problem for handling loads from multiple sources on arbitrary networks. This problem is all the more challenging as 1) the topology is arbitrary, 2) in such networks, it is difficult to decide from which source and which route a processing node should receive loads, and 3) processing nodes must be allocated to different sources when they become available. We study two distinct cases of interest, static case and dynamic case, and propose two novel strategies, referred to as Static Scheduling Strategy (SSS) and Dynamic Scheduling Strategy (DSS), respectively. Both strategies work in an iterative fashion. In each iteration, they will use a novel Graph Partitioning (GP) scheme to partition the network such that each source in the network gains a portion of network resources and then these sources cooperate to process their loads. We analyze the performance of DSS using queuing theory and derive upper bounds on a load's average waiting time and a source's average queue length. We use simulation to verify the usefulness and effectiveness of SSS and DSS. Our findings reveal an interesting load insensitive property of SSS and also verify the theoretical upper bound of average queue length at each source in the dynamic case. © 2010 IEEE.
Source Title: IEEE Transactions on Parallel and Distributed Systems
ISSN: 10459219
DOI: 10.1109/TPDS.2009.62
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Jan 31, 2023


checked on Jan 31, 2023

Page view(s)

checked on Feb 2, 2023

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.