Please use this identifier to cite or link to this item:
Title: Simultaneous finite- and infinite-zero assignments of linear systems
Authors: Chen, B.M. 
Da-Zhong, Z.
Keywords: infinite zeros
Invariant zeros
linear system theory
zero placement
Issue Date: Apr-1995
Citation: Chen, B.M.,Da-Zhong, Z. (1995-04). Simultaneous finite- and infinite-zero assignments of linear systems. Automatica 31 (4) : 643-648. ScholarBank@NUS Repository.
Abstract: A simultaneous finite- and infinite-zero assignment problem via sensor selection for linear multivariable systems is proposed. By sensor selection we mean an appropriate choice of the output matrix C. Here, by utilizing the well-known Burnovsky canonical form for a linear system characterized by the matrix pair (A, B), we obtain an explicit construction algorithm that generates a non-empty set C of output matrices such that for any member C of this set, the corresponding system characterized by the triple (A, B, C) has the prescribed finite- and infinite-zero structures. Two examples are also given to illustrate our results. © 1995.
Source Title: Automatica
ISSN: 00051098
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Page view(s)

checked on Oct 14, 2021

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.