Please use this identifier to cite or link to this item:
Title: Engineering of binary metal oxide nanostructures for highly efficient and stable excitonic solar cells
Keywords: Metal oxide nanostructures, Dye sensitized solar cells, Organic solar cells, charge transport, stability, interfacial engineering
Issue Date: 14-Aug-2013
Citation: NAVEEN KUMAR ELUMALAI (2013-08-14). Engineering of binary metal oxide nanostructures for highly efficient and stable excitonic solar cells. ScholarBank@NUS Repository.
Abstract: Excitonic solar cells (ESCs) such as Dye Sensitized Solar Cells (DSCs) and Organic Solar Cells (OSCs) are promising candidates of third generation photovoltaics. Immense research has been carried out in these areas for the last two decades, focusing on improving the device performance and stability in order to make it economically viable. Nanostructured binary metal oxide semiconductors (n-MOS) form an inevitable part in ESCs. In this thesis, Molybdenum Oxide (MoO3) and Zinc Oxide (ZnO) is used as hole and electron transporting interfacial layers respectively. This doctoral research further identifies that the depth of trap states in the band gaps of these n-MOS which originates as a result of structural disorders, plays a dominant role in determining the efficiency and stability of OSCs. By engineering the buffer layers to have a reduced trap depth, the possibilities to combine high efficiency and operational stability in OSCs is demonstrated. The study is further extended to DSCs, in which an n-MOS, Tin Oxide (SnO2) serves as a charge separation and electron transport medium (photoelectrode). Optimization of the SnO2 photoelectrode with reduced trap states, significantly improved the photovoltaic performance and also exhibited record open circuit voltage.
Appears in Collections:Ph.D Theses (Open)

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
ElumalaiNaveenK.pdf8.6 MBAdobe PDF



Page view(s)

checked on Sep 21, 2020


checked on Sep 21, 2020

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.