Please use this identifier to cite or link to this item: https://scholarbank.nus.edu.sg/handle/10635/49134
DC FieldValue
dc.titleBlind Image Deconvolution: Model and Computation
dc.contributor.authorWANG KANG
dc.date.accessioned2014-01-31T18:00:55Z
dc.date.available2014-01-31T18:00:55Z
dc.date.issued2013-08-06
dc.identifier.citationWANG KANG (2013-08-06). Blind Image Deconvolution: Model and Computation. ScholarBank@NUS Repository.
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/49134
dc.description.abstractThis dissertation aims at answering some fundamental questions in blind image deconvolution, and presenting state-of-the-art computational methods. The first part focuses on the mathematical models and computational methods fundamental to blind image deconvolution. We firstly introduced a new image prior for characterizing clear images with sharp edges based on wavelet frame and $\ell_1$ norm related sparsity-prompting prior. Secondly a robust non-blind image deconvolution method is developed to handle the errors in kernel which could cause great ringing artifacts if not handled properly. The second part is devoted to the development of practical image deblurring systems. An efficient two-stage approach to remove spatially-varying motion blurring from a single photo is designed to solve the non-stationary image blurring. For motion blurring with non-linear camera response function, we developed a dual-image approach using a single-shot mode available in commercial cameras: a high-resolution image in JPEG format and a low-resolution image in RAW format.
dc.language.isoen
dc.subjectimage processing, deconvolution, wavelet, optimization
dc.typeThesis
dc.contributor.departmentMATHEMATICS
dc.contributor.supervisorJI HUI
dc.description.degreePh.D
dc.description.degreeconferredDOCTOR OF PHILOSOPHY
dc.identifier.isiutNOT_IN_WOS
Appears in Collections:Ph.D Theses (Open)

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
02MathPre.pdf3.17 MBAdobe PDF

OPEN

NoneView/Download
03ImagePrior.pdf6.37 MBAdobe PDF

OPEN

NoneView/Download
04RobustDeconvPart1.pdf8.1 MBAdobe PDF

OPEN

NoneView/Download
04RobustDeconvPart2.pdf685.32 kBAdobe PDF

OPEN

NoneView/Download
04RobustDeconvPart3.pdf9.32 MBAdobe PDF

OPEN

NoneView/Download
05TwoStagePart1.pdf2.55 MBAdobe PDF

OPEN

NoneView/Download
05TwoStagePart2.pdf8.1 MBAdobe PDF

OPEN

NoneView/Download
06nonLinearCRFPart1.pdf4.12 MBAdobe PDF

OPEN

NoneView/Download
06nonLinearCRFPart2.pdf6.84 MBAdobe PDF

OPEN

NoneView/Download
07Ref.pdf564.63 kBAdobe PDF

OPEN

NoneView/Download
01Intro_withDeclaration.pdf5.02 MBAdobe PDF

OPEN

NoneView/Download

Page view(s)

210
checked on May 23, 2019

Download(s)

1,333
checked on May 23, 2019

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.